

Spectrum recorded in solution using CCl₄ solvent

Stretching vibrations (in cm ⁻¹)	Nature	Probable assignment
3300	m	N–H stretching of amide
2850-2950	S	C–H stretching
1680	S	C=O stretching (amide I)
1600	S	Aromatic C=C stretching
1580	S	Aromatic C=C stretching
1540	S	N–H bending (amide II)
520	W	C–Br stretching

Explanation: 3300 cm⁻¹, **medium signal** for N–H stretching of secondary amide.

<u>**1680** cm⁻¹, broad signal</u> The lowering of C=O stretching frequency is due to the conjugation of non-bonded electron on N of –NH– group with C=O. <u>**1540** cm⁻¹, strong signal</u> for N–H bending (amide II)

1

IR Spectrum analysis of *4-methyl-α-bromoacetophenone:*

Spectrum recorded in solution using CCl₄ solvent

Stretching vibrations (in cm ⁻¹)	Nature	Probable assignment
3050	m	C _{sp2} –H stretching (aromatic)
2975	m	C _{sp3} –H stretching
1710	S	C=O stretching
1600	S	Aromatic C=C stretching
825	S	out of plane C-H bending
		(p-disubstituted benzene)
550	S	C—Br Stretching

IR Spectrum analysis of vanillin:

Spectrum recorded in solution using CCl₄ solvent

Stretching vibrations (in	Nature	Probable assignment
		O II stratshing
5550	S	U-H stretching
3100-2950	W	sp ² C-H and sp ³ C-H stretching
		(overlapping)
2850 & 2750	m	C-H stretching.of -CHO
1700	S	C=O stretching
1600, 1520	S	Aromatic C=C stretching
1150	S	C–O Stretching

Explanation: 2850 & 2700 cm⁻¹, medium signal for C–H stretching, two moderately intense bands are observed. The appearance of two bands is attributed to Fermi resonance between the fundamental aldehydic C–H stretching and the first overtone of the aldehydic C–H bending vibration.

IR Spectrum analysis of *cinnamic acid*:

Spectrum recorded in Nujol Mull

Stretching vibrations (in cm ⁻¹)	Nature	Probable assignment
2900-2500	br.	O-H stretching
1680	S	C=O stretching
1630	S	Conjugated C=C stretching
1430	S	O—H bending vibration.
970	8	C-H bending (trans alkene)

Explanation: 2900-2500 cm⁻¹, broad signal for O—H stretching. The broad and lowering in frequency is explained by the strong intermolecular H—bonding.

<u>**1680** cm⁻¹, strong signal</u>: The lowering of C=O stretching frequency is due to the conjugation of C=C with C=O.

<u>**1630** cm⁻¹, strong signal:</u> The lowering of C=C stretching frequency is due to the conjugation of C=C with C=O.

Spectrum recorded in solution using CCl₄ solvent

Stretching vibrations (in	Nature	Probable assignment
cm)		
3460 & 3360	m	N–H stretching
2920	S	C-H stretching
2700-2500	W	Chelate type –O–H stretching and
		carboxylic acid dimers
1670	S	C=O stretching
1650-1600	S	C=C stretching
850	m	Out of plane C—H bending
		(p-disubstituted benzene)

Explanation: <u>3460&3360 cm⁻¹, medium signal</u> for N—H stretching. The lowering in frequency is explained by the strong intermolecular H—bonding.

<u>2700–2500 cm⁻¹, weak signal:</u> due to chelate type O–H stretching of carboxylic acid dimer.

<u>**1670** cm⁻¹, strong signal</u>: The lowering of C=O stretching frequency is due to the extended conjugation of lone pair of electron of $-NH_2$ with C=O.

IR Spectrum analysis of salicylamide:

Spectrum recorded in KBr disc

Stretching vibrations (in cm ⁻¹)	Nature	Probable assignment
3400 & 3200	S	N–H stretching(asymmetric &
		symmetric)
2900	S	C–H stretching
1680	S	C=O stretching (amide I)
1640, 1600	S	N—H bending (amide II)
1580	S	Ar—C=C stretching
1250	S	C–O stretching
750	S	Out of plane C—H bending
		(o-disubstituted benzene)

Explanation: <u>3400 cm⁻¹, strong signal</u> for N–H asymmetric stretching.

<u>3200 cm⁻¹, strong signal</u> for N–H symmetric stretching.

<u>**1680** cm⁻¹, strong signal:</u> The lowering of C=O stretching frequency is due to the conjugation of lone pair of electron of $-NH_2$ with C=O.(amide I)

<u>1640, 1600 cm⁻¹, strong signal</u> for N–H bending (amide II)

IR Spectrum analysis of 2-hydroxyacetophenone:

Spectrum recorded in solution using CCl₄ solvent

Stretching vibrations (in cm ⁻¹)	Nature	Probable assignment
3200-2750	br.	O–H stretching
1630	S	C=O stretching
1580	S	Ar—C=C stretching
1260	S	C–O stretching
770	S	Out of plane C—H bending
		(o-disubstituted benzene)

Explanation: <u>3200–2750 cm⁻¹</u>, <u>broad signal</u> for O–H stretching. Lowering of frequency is due to strong intramolecular H–bonding with carbonyl oxygen.

<u>**1630** cm⁻¹, strong signal</u>: The lowering of C=O stretching frequency is due to the conjugation of C=O with aromatic π -electrons and intramolecular H—bonding.

Spectrum recorded in solution using CCl₄ solvent

Stretching vibrations (in cm ⁻¹)	Nature	Probable assignment
3050-2900	br.	O–H stretching
1750 & 1715	S	C=O stretching
1430 & 1370	S	CH ₂ bending

Explanation: 3100 cm⁻¹, broad signal for O—H stretching of —COOH group. Lowering of frequency is due to strong intramolecular H—bonding with carbonyl oxygen.

IR Spectrum analysis of *benzyl acetate*:

Spectrum recorded in solution using CCl_4 solvent

Stretching vibrations (in cm ⁻¹)	Nature	Probable assignment
3050	m	Csp2–H stretching
2950	S	Csp3–H stretching
1750	S	C=O stretching
1235	S	C—O stretching
760	S	Out of plane C—H bending
		(monosubstituted benzene)

IR Spectrum analysis of *diethyl maleate:* Spectrum recorded in film.

Stretching vibrations (in cm ⁻¹)	Nature	Probable assignment
3100-2850	S	C–H stretching
1730	S	C=O stretching
1640	S	C=C stretching
1220	S	C–O stretching

IR Spectrum analysis of *diethyl fumerate:* Spectrum recorded in film.

Stretching vibrations (in cm ⁻¹)	Nature	Probable assignment
2990-2880	S	C-H stretching
1725	S	C=O stretching
1650	m	C=C stretching
985	S	C–H bending, trans alkene

IR Spectrum analysis of *4-nitrobenzaldehyde***:** Spectrum recorded in solution using CCl₄ solvent

Stretching vibrations (in	Nature	Probable assignment
cm^{-1})		
2970-2900	S	C–H stretching
2850 & 2730	m	C—H stretching of —CHO
1710	S	C=O stretching
1540 & 1350	S	N=O stretching of –NO ₂ (asymmetric
		& symmetric)
820	S	Out of plane C—H bending
		(p-disubstituted benzene)

Explanation: 2850 & 2730 cm⁻¹, strong signal for C—H stretching of —CHO group. Two moderately intense bands are observed. The appearance of two bands is attributed to Fermi resonance between the fundamental aldehydic C—H stretching and the first overtone of the aldehyric C—H bending vibration.

<u>**1540** cm⁻¹, strong signal</u> due to asymmetric N–O stretching of $-NO_2$ group. <u>**1350** cm⁻¹, strong signal</u> due to symmetric N–O stretching of $-NO_2$ group.

IR Spectrum analysis of *mesityl oxide:* Spectrum recorded in film.

Stretching vibrations (in cm^{-1})	Nature	Probable assignment
2950-2900	S	C-H stretching
1700	S	C=O stretching
1640	S	C=C stretching
1450 & 1360	S	CMe ₂

Explanation: <u>1700 cm⁻¹</u>, strong signal: The lowering of C=O stretching frequency is due to the conjugation of C=C with C=O.

<u>**1640** cm⁻¹, strong signal:</u> The lowering of C=C stretching frequency is due to the conjugation of C=C with C=O.

IR Spectrum analysis of *salicylaldehyde*:

Spectrum recorded in CCl₄.

Stretching vibrations (in	Nature	Probable assignment
cm ⁻¹)		
3300-3000	br, shallow	O-H stretching
3060	m	C—H stretching
2850, 2750	m	C—H stretching of —CHO
1670	S	C=O stretching
1490	S	Ar—C=C stretching

Explanation: <u>3300–3000 cm⁻¹</u>, <u>broad signal</u> for O–H stretching. The strong intramolecular H–bonding occurs in salicylaldehyde, the resulting absorption is at lower frequency and it is broad, shallow, and independent of concentration.

<u>2850 & 2750 cm⁻¹, strong signal</u> for C—H stretching of —CHO group. Two moderately intense bands are observed. The appearance of two bands is attributed to Fermi resonance between the fundamental aldehydic C—H stretching and the first overtone of the aldehydic C—H bending vibration.

<u>**1670** cm⁻¹, strong signal</u>: The lowering of C=O stretching frequency is due to the conjugation of C=O with aromatic π -electrons and intramolecular H—bonding.

IR Spectrum analysis of *p-nitroaniline***:** Spectrum recorded in KBr

Stretching vibrations (in	Nature	Probable assignment
cm)		
3480	S	N–H asymmetric stretching
3360	S	N–H symmetric stretching
3200	m	sp ² Ar-C-H stretching.
1620,1600		Ar-C=C stretching.
1540 & 1320	S	N=O stretching of NO ₂ , (symmetrical
		and unsymmetrical)
840	S	Out of plane C—H bending
		(p-disubstituted benzene)

Explanation: <u>3360 cm⁻¹, storng signal</u> for asymmetric stretching of N–H bond

<u>3200 cm⁻¹, storng signal</u> for symmetric stretching of N–H bond

<u>**1540** cm⁻¹, strong signal</u> due to asymmetric N–O stretching of $-NO_2$ group. <u>**1320** cm⁻¹, strong signal</u> due to symmetric N–O stretching of $-NO_2$ group.