
CHA P T E R 12
AComplete Accounting System
for a Merchandising Company

C H A P T E R O B J E C T I V E S

This chapter will describe how to generate financial statements in a relational-database
accounting information system (AIS) such as Microsoft Access. Chapters 8 through 11
presented queries for financial-statement line items that used data from individual business
processes. These line items include sales, accounts receivable, accounts payable, wages
expense, and loans payable. In this chapter, you will learn how to create queries for finan-
cial-statement line items that span multiple business processes such as cash, cost of goods
sold, and retained earnings. We will also discuss how to capture data to enable the system
to report items such as fixed assets, depreciation expense, and support activities such as
rent, advertising, and insurance. Specifically, in this chapter, you will learn how to use
Microsoft Access to design tables, queries, macros, and reports that can help you:

• Create tables to store data from non-inventory purchases and queries to compute financial
statement balances related to this data.

• Create queries to compute income statement and balance sheet items related to end-of-period
adjustments.

• Create queries for financial statement items that span multiple business processes.

• Create income statement and balance sheet reports.

• Create macros to automate the financial statement creation process.

587

Introduction
One of the main functions of an accounting system, whether manual or computerized,
flat-file or relational, is to produce general-purpose financial statements for internal and
external users. As you learned in Chapters 8 through 11, account balances are not stored
in a relational database—rather, they are derived from the raw data stored in the system.
Although many account balances on Pipefitters Supply Company’s income and statement
balance sheet can be computed from data within a single business process, other items
require data from multiple business processes. Figures 12.1 and 12.2 show an income

Fig. 12.1 Business
processes used to derive
Pipefitters’ current
income statement
items.

Fig. 12.2 Business
processes used to derive
Pipefitters’ current
balance sheet items.

588 Chapter 12: A Complete Accounting System for a Merchandising Company

statement and a balance sheet for Pipefitters Supply Company and the business process or
processes used to derive each item. The income statement and balance sheet items in the
figures are based on the system you designed upon completion of Chapter 11.

Download to your computer or other storage device the Access database from the
book’s companion Web site. The unzipped database is named Ch12.accdb. It contains
all of the objects you will need to follow the illustrations in this chapter as well as to
complete the end-of-chapter exercises and problems.

Financial Statement Items Connected
with Support Activities
Pipefitters Supply Company’s database accounting system currently captures all data
necessary to produce financial statement balances related to the events in the four main
business processes of a merchandising company: financing, acquisition/payment, human
resources (HR), and sales/collection. However, enterprises purchase fixed assets and
other non-inventory items to support their main activities. Pipefitters uses some of these
non-inventory acquisitions at the time of purchase, such as rent and utilities, while other
items have useful lives that last from a few months to many years, such as equipment
and insurance policies.

Adding Tables and Relationships to the Database
for Support Activities

We need to add three additional tables to capture Pipefitters’ data about non-inventory
items. First, Pipefitters’ database needs a non-inventory table to record the types of items
that it acquires. This list of items will look like a partial chart of accounts (see Figure
12.3). We included the account names for the balance sheet and income statement be-
cause the resource names are often not exactly what appear on financial statements.
Like the purchase–inventory relationship, a non-inventory purchase can be for many dif-
ferent items (e.g., a purchase from Home Depot could include items used for repairs and
maintenance, and other items classified as supplies) and a non-inventory item, such as
utilities, can participate in many purchases. Therefore, we need a relationship table to
store details about the individual items on each purchase. Since this relationship table
will contain items that are expensed immediately (e.g., utilities), items that are capitalized
and amortized or depreciated (e.g., prepaid insurance and equipment), as well as items
that are capitalized and not amortized or depreciated (e.g., land), we will add the attri-
butes shown in Figure 12.4 to tblInflow-PurchaseNonInventory. In addition to creating
tblNonInventory and tblInflow-PurchaseNonInventory, we need to create a purchase-
type table to make the queries and forms that need to distinguish inventory purchases
from non-inventory purchases easier to create.

Fig. 12.3
tblNonInventory
in Datasheet view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 589

EXERCISE 12.1: CREATING TABLES AND RELATIONSHIPS
TO STORE NON-INVENTORY DATA

1. Create tblNonInventory. Click the Create tab; click Table Design in the Tables

group and then click the Design View command that appears in the Datasheet

context tab. Name the table tblNonInventory. Add the primary key and non-key

attributes (fields) shown in Figure 12.5. Switch to Datasheet view and add in the

records shown in Figure 12.3. Save and close the table.

2. Create tblInflow-PurchaseNonInventory using the same procedure as you did for

tblNonInventory. Add the concatenated primary key (InventoryReceiptID and

ResourceID) and non-key attributes (fields) shown in Figure 12.6. Save and close

the table.

3. Create tblPurchaseType using the same procedure as you did for tblNonInventory.

Add the primary key and non-key attributes (fields) shown in Figure 12.7. Switch

to Datasheet view and add in the two records shown in Figure 12.7. Save and

close the table.

4. Add PurchaseTypeID to tblPurchase as a foreign key. Open tblPurchase in Design

view. Insert a blank row after PurchaseOrderID. Type PurchaseTypeID in the Field

Name column. Use the Field Properties for PurchaseTypeID in Figure 12.7, except

enter No for the Required property and Yes (Duplicates OK) for the Indexed

property. Save your changes and switch to Datasheet view. Enter 01 in the

PurchaseTypeID column for all records in the table. When you are finished,

switch back to Design view and change the Required property to Yes.

5. Change the Required property for PurchaseOrderID to No. This is necessary

because purchases of non-inventory items will not always have a purchase order.

Save and close tblPurchase.

6. Create the relationships between tblPurchase, tblPurchaseType, tblInflow-

PurchaseNonInventory, and tblNonInventory. In the Database Tools tab, click

Relationships in the Show/Hide group to reveal a blank Relationships window.

Add tblPurchase, tblPurchaseType, tblInflow-PurchaseNonInventory, and

tblNonInventory to the Relationships window. Use Figure 12.4 as a guide to

create the relationships. Notice that Figure 12.4 includes tblInventory and

tblInflow-PurchaseInventory to illustrate that recording acquisitions of inventory

items is the same as recording non-inventory acquisitions. Also, Figure 12.4

shows that referential integrity can be enforced between the purchase table and

Fig. 12.4 The
relationship window
showing resource,
event, and type tables
for purchases.

590 Chapter 12: A Complete Accounting System for a Merchandising Company

both resource tables, inventory and non-inventory, by using relationship tables.

Save your changes to the Relationships window and close it.

7. Add records for non-inventory purchases to tblPurchase. Open tblPurchase in

Datasheet view. Open Ch12.xlsx. Copy and Paste the records from the

tblPurchase worksheet into tblPurchase in Access. Save and close tblPurchase.

8. Add the purchase line item detail for the non-inventory purchases to tblInflow-

PurchaseNonInventory. Copy and Paste the records from the tblInflow-

PurchaseNonInventory worksheet into tblInflow-PurchaseNonInventory in Access.

Save and close tblInflow-PurchaseNonInventory.

9. Add cash disbursements related to non-inventory purchases to tblCashDisbursement.

Copy and Paste the records from the tblCashDisbursement worksheet into

tblCashDisbursement in Access. Save and close tblCashDisbursement.

Support Items to be Expensed as Incurred

Pipefitters Supply Company expenses many support items that are expensed in the
period in which they are purchased. Pipefitters management decided that any item ac-
quired with a useful life of one month or less will be immediately expensed. Pipefitters
also expenses supplies when they are purchased. To capture this information, we need to
create a set of queries that will sum the non-inventory items purchased during the pe-
riod, which means that the date constraints must have both a beginning date and an
ending date.

Fig. 12.5 Fields for
tblNonInventory.

Chapter 12: A Complete Accounting System for a Merchandising Company 591

Since the beginning dates and ending dates for all financial statements are the same,
you will create a macro to store a user-specified beginning date and ending date in a
temporary table. You will use these temp variables as date criteria rather than using
parameters so that users will only need to enter the beginning and ending dates one
time.

Fig. 12.6 Fields
for tblInflow-
PurchaseNonInventory.

Fig. 12.7 Fields for
tblPurchaseType and
table in Datasheet view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

592 Chapter 12: A Complete Accounting System for a Merchandising Company

EXERCISE 12.2: CREATING A MACRO TO STORE
USER-SPECIFIED DATES

1. Click the Create tab and click Macro in the Other group. Type SetTempVar into the

Action column of the first row.

2. Click on the Name box in the Action Arguments Pane. Type BeginDate. In the

Expression box, type InputBox(“Beginning of Period Date”). When the user runs

the macro, he or she will see an input box with the text, “Beginning of Period

Date,” above the input area. Once the user enters the date and clicks OK, the

value entered will be stored in [TempVars]![BeginDate].

3. Follow Step 2 again to add a second SetTempVar Action with a name of EndDate.

In the Expression box, type InputBox(“End of Period Date”).

4. Close the macro. In the Save As dialog box, name your macro mcrTempDate.

Figure 12.8 shows the macro in Design view.

EXERCISE 12.3: CREATING QUERIES TO COMPUTE ITEMS
IMMEDIATELY EXPENSED

The first query computes the purchase line extensions and the extended salvage value.

We added other items so that you can use the same query to create a non-inventory pur-

chase form, which is one of the end-of-chapter exercises.

1. Click the Create tab and click Query Design in the Other group. Add tblInflow-

PurchaseNonInventory to the Table Pane. Add all fields from the Field Roster to

the Criteria Pane. Save the query as qryNonInvExp01-FsubPurchNonInventory.

2. Click the first available column. Use Expression Builder to create the following

expression to compute the extended salvage value: ExtendedSalvageValue:

[SalvageValuePerItem]*[QtyOfItemPurch]. Open the Property Sheet and select

Currency Format. Type Total Salvage Value for the Caption. Move this column to

the immediate right of SalvageValuePerItem.

3. Click the next available column. Use Expression Builder to create the following

expression to compute the purchase line extension: PurchaseLineExtension:

[UnitCostOfItemPurch]*[QtyOfItemPurch]. In the Property Sheet, select Currency

Format. Type Item Extension for the Caption.

4. Save your changes; run the query. Your query result should look like the dynaset

in Figure 12.9. Close the query.

Create a query to sum non-inventory purchases during the period by resource type that

will be immediately expensed.

5. Click the Create tab and click Query Design in the Other group. Add tblPurchase,

tblNonInventory, and qryNonInvExp01-FsubPurchNonInventory to the Table Pane.

Link tblNonInventory and qryNonInvExp01-FsubPurchNonInventory on ResourceID.

Add the following fields to the Criteria Pane: ResourceID and IncomeStatementName

from tblNonInventory, PurchaseLineExtention and UsefulLife from qryNonInvExp01-

FsubPurchNonInventory, and InventoryReceiptDate from tblNonInventory. Move

InventoryReceiptDate to the left of UsefulLife. Save the query as qryNonInvExp02-

ImmediateExpenses.

Fig. 12.8
mcrTempDate in
Design view.

M
ic
ro
so
ft
pr
od
uc
t

sc
re
en

sh
ot

re
pr
in
te
d

w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 593

6. Click Totals in the Show/Hide group. Leave the Total field set to Group By for

ResourceID and IncomeStatementName, and set the Total field for

PurchaseLineExtension to Sum to sum expenses by item.

7. Use Where in the Total field for InventoryReceiptDate and UsefulLIfe—the two

fields that are used to limit which records are summed. Enter Between

[tempVars]![BeginDate] And [TempVars]![EndDate] for the date criteria to select

items purchased during the current period. Setting the Criteria for UsefulLIfe to

<=1 enforces Pipefitters’ rule that only items with a useful life of one month or

less are to be expensed in full in the period acquired (see Figure 12.10). Save

your query.

8. Test the query. Double-click mcrTempDate to set the beginning of period date to

1/1/2010 and the end of period date to 1/31/2010. Double-click qryNonInvExp02-

ImmediateExpenses to run it. Your result should look like the dynaset in Figure

12.11. Why are some of the non-inventory types missing? Close the query.

Fig. 12.10
qryNonInvExp02-
ImmediateExpenses
in Design view.

Fig. 12.9 Dynaset
for qryNonInvExp01-
FsubPurchNon-
Inventory.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

594 Chapter 12: A Complete Accounting System for a Merchandising Company

Support Items to Be Capitalized and Amortized or Depreciated

In the previous section, you used the useful life to identify which items are expensed in
the period acquired. You also used a date constraint to determine which of these items
are expensed in the current period. In this section, the useful life will be used to identify
items to be capitalized and amortized. You will then use date functions and date con-
straints to compute the current-period expense as well as prepaid expense balances and
accumulated depreciation.

EXERCISE 12.4: QUERY TO COMPUTE CURRENT PERIOD
AMORTIZATION/DEPRECIATION BY ITEM

1. Make a copy of qryNonInvExp02-ImmediateExpenses and name it

qryNonInvExp03-PrepaidItems. Open qryNonInvExp03-PrepaidItems in Design

view. Make sure that the Totals row is visible in the Criteria Pane. Move

InventoryReceiptDate to the right of UsefulLife in the Criteria Pane. Change the

Criteria of UsefulLife to >1 to limit purchases to items that are to be capitalized

and amortized/depreciated. Change the criteria for InventoryReceiptDate to

<=[TempVars]![EndDate], because any amortizable/depreciable asset acquired

prior to the end of the period (not limited to items acquired during the current

period) may have a useful life that extends into (or beyond) the current period.

Drag ExtendedSalvageValue from the qryNonInvExp01-FsubPurchNonInventory

Field Roster to the Criteria Pane to the left of UsefulLife. Save your changes.

2. Add the temporary variable parameters—the user-specified beginning and ending

reporting dates—to the Parameters list. You will use the temporary variables in

several expressions in this query. Because Access does not automatically assign

the Date Data Type to temporary variables when they are used in a field

expression, you will specify in the Parameter List that the parameters are of Data

Type Date. Click Parameters in the Show/Hide group to open the Parameter list.

Enter the Parameter names as indicated in Figure 12.12. Select Date/Time as the

Data Type for each parameter. Click OK to close the Parameter List.

3. Compute the daily expense. In the first available column, use Expression Builder

to create the following formula: DailyExpense: ([PurchaseLineExtension]-

[ExtendedSalvageValue])/[UsefulLife]*(12/365). Why is it necessary to multiply

useful life by 12/365? Open the Property Sheet and set the Format to Currency

and Decimal Places to 2.

4. Compute the end of the asset’s useful life. In the next available column, use

Expression Builder to create the following formula: EndOfLifeDate: DateAdd(“m”,

[UsefulLife],[InventoryReceiptDate]). The DateAdd function adds the amount

Fig. 12.11 Dynaset
for qryNonInvExp02-
ImmediateExpenses
between 1/1/2010
and 1/31/2010.

M
ic
ro
so
ft
pr
od
uc
ts
cr
ee
n
sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 595

specified in the second argument ([UsefulLife]) in the unit of measurement

specified in the first argument (“m” for months) to the date specified in the third

argument ([InventoryReceiptDate]). Since we are only interested in assets whose

useful lives extend beyond the beginning of the current period, add

>=[TempVars]![BeginDate] as the Criteria for EndOfLifeDate. In the Property

Sheet, set the Format to Short Date.

5. Amortization/depreciation expense for the current period begins on the later of the

beginning of the period date or the acquisition date. Use an IIF statement to make

this comparison. By entering the expression below in the next available column in

the Field Roster, you will assign the appropriate date to the attribute,

BeginningOfComputationDate, which will be used as the starting date to

compute the current period amortization/depreciation for each asset:

BeginningComputationDate: IIf([InventoryReceiptDate]<[TempVars]![BeginDate],

[TempVars]![BeginDate],[InventoryReceiptDate]). The expression to be evaluated,

“Is the purchase date earlier than the beginning date for the reporting period?” is

the first argument of the function. If this is true, then assign the value of the

second argument, the beginning of period date, to BeginningComputationDate. If

the expression is false, then the third argument, purchase date, will be assigned

to BeginningComputationDate. In the Property Sheet, set the Format to Short

Date.

6. Now that you have established the BeginningComputationDate, you will use

another IIF statement to compute the EndingComputationDate, which is the

earlier of the end of the reporting period or the end date of the asset’s

useful life. Enter the following expression in the next available column in the

Field Roster: EndingComputationDate: IIf([EndOfLifeDate]>[tempvars]![EndDate],

[tempvars]![EndDate],[EndOfLifeDate]). If the end of the asset’s useful life is

later than the end of the reporting period date (the first argument), then assign

the end of period date to EndingComputationDate (the second argument). If

the expression is false, meaning that the end of the asset’s useful life falls

within the reporting period, then assign the end of useful life date (the third

argument) to EndingComputationDate. In the Property Sheet, set the Format to

Short Date.

7. Save the query so that the new fields you have created will show up in Expression

Builder. Use the DateDiff function to compute the number of days—denoted by “d”

in the function’s first argument—between BeginningComputationDate (the

function’s second argument) and EndingComputationDate (the function’s third

argument). You will then multiply the result by the expense per day. Create

the expression to compute the amortization/depreciation expense of each asset

for the reporting period in Expression Builder: PeriodExpense: DateDiff(“d”,

[BeginningComputationDate],[EndingComputationDate])*[DailyExpense]. Open the

Property Sheet and select Currency Format.

8. Test the BeginningComputationDate and EndingComputationDate expressions.

Double-click mcrTempDate and set the beginning and ending dates to 2/1/2010

and 10/31/2010, respectively. Click Run in the Results group to run

qryNonInvExp03-PrepaidItems. Notice in the top panel of Figure 12.13 that the

BeginningComputationDate for the last three assets is later than 2/1/2010. Why?

Why is the EndingComputationDate for the fifth asset (Insurance purchased for

$3,680.00) earlier than 10/31/2010?

9. Test the date constraints for InventoryReceiptDate and EndOfLifeDate. Run

mcrTempDate again and set the beginning and ending dates to 1/1/2010 and

1/31/2010, respectively, and run qryNonInvExp03-PrepaidItems once more.

596 Chapter 12: A Complete Accounting System for a Merchandising Company

Compare the first and second dynasets in Figure 12.13. Notice in the second panel

how the InventoryReceiptDate constraint only selects assets acquired before the

end of the reporting period. Now run mcrTempDate a third time. Set the

beginning and ending dates to 4/1/2011 and 10/31/2011, respectively. Rerun

qryNonInvExp03-PrepaidItems. Compare the first and third dynasets. How does

the date constraint for EndOfLifeDate correctly prevent the query from selecting

the advertising item and two insurance items?

Chapter 12: A Complete Accounting System for a Merchandising Company 597

Fig. 12.12 Query
Parameters window for
qryNonInvExp03-
PrepaidItems.

Between 2/1/2010 and 10/31/2010.

Between 1/1/2010 and 1/31/2010.

Between 4/1/2011 and 10/31/2011.

Fig. 12.13 Dynasets
for qryNonInvExp03-
PrepaidItems.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

In Exercise 12.4, we showed you how to compute amortization/depreciation expense
for all non-inventory assets with a useful life greater than one month. We will finish this
process in Exercise 12.5 by summing these expenses by non-inventory type.

EXERCISE 12.5: CREATING A QUERY TO SUM
AMORTIZATION/DEPRECIATION EXPENSE
BY NON-INVENTORY TYPE

1. Click the Create tab and click Query Design in the Other group. Add qryNonInvExp03-

PrepaidItems to the Table Pane. Add ResourceID, IncomeStatementName, and

PeriodExpense to the Criteria Pane. Save the query as qryNonInvExp04-

SumPrepaidsByItem.

2. Click Totals in the Show/Hide group and change the Total for PeriodExpense

to Sum. Save your query. The dynaset for the period between 1/1/2010 and

3/31/2010 is shown in Figure 12.14.

Producing Income Statement and Balance Sheet Line-Items
for Support Activities

Pipefitters Supply Company will have several items on its income statement and balance
sheet related to its support activities. In the previous section, you computed amounts im-
mediately expensed by non-inventory type as well as the amortization/depreciation ex-
pense by non-inventory type. In this section, we will show you how to combine these
items for the income statement. We will also show you how to compute the prepaid-
expense balance and balances related to depreciable assets—equipment and accumulated
depreciation.

EXERCISE 12.6: COMPUTING EXPENSES FOR AN INCOME
STATEMENT RELATED TO SUPPORT
ACTIVITIES

Combine, by non-inventory type, immediately expensed items with amortization/depreci-

ation expenses.

1. Click the Create tab and click Query Design in the Other group. Add

tblNonInventory, qryNonInvExp02-ImmediateExpenses, and qryNonInvExp04-

SumPrepaidsByItem to the Table Pane. Add the following fields to the Criteria

Fig. 12.14 Dynaset
for qryNonInvExp04-
SumPrepaidsByItem
for the period
between 1/1/2010
and 3/31/2010.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

598 Chapter 12: A Complete Accounting System for a Merchandising Company

Pane: ResourceID and IncomeStatementName from tblNonInventory,

SumOfPurchaseLineExtension from qryNonInvExp02-ImmediateExpenses, and

SumOfPeriodExpense from qryNonInvExp04-SumPrepaidsByItem.

2. Use outer joins to show both immediately expensed items and amortization/

depreciation for all non-inventory types other than land. All resource types will

appear in the dynaset, even if there are no corresponding immediate expenses or

amortization/depreciation expenses. Drag ResourceID from tblNonInventory to

ResourceID in the qryNonInvExp02-ImmediateExpenses Field Roster. Double-click the

relationship between the two Field Rosters. Select Option 2 to Include ALL records

from tblNonInventory and only those records from qryNonInventoryExpenses-

PeriodExpenses where the joined fields are equal. Create a similar outer join between

tblNonInventory and qryNonInvExp04-SumPrepaidsByItem (see Figure 12.15). Prevent

land from being selected from tblNonInventory by adding <>”106” (the ResourceID

for land) to the Criteria for ResourceID. Save the query as qryNonInvExp05-

SumImmediatesAndPrepaids.

3. Combine the immediate-expensed items with amortization/depreciation. Click

the next available column in the Criteria Pane and enter the following

expression: IncomeStatementExpense: Nz([SumOfPurchaseLineExtension])

+Nz([SumOfPeriodExpense]). Open the Property Sheet and set the Format to

Currency and Decimal Places to 2. Save the query. Figure 12.16 shows the

dynaset when the query is run for the period between 1/1/2010 and 1/31/2010.

Notice that the Nz function allows totals to be computed when one or both

expenses are null.

Fig. 12.15
qryNonInvExp05-
SumImmediates-
AndPrepaids
in Design view.

Fig. 12.16 Dynaset
for qryNonInvExp05-
SumImmediatesAnd-
Prepaids between
1/1/2010 and
1/31/2010.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
ts
cr
ee
n
sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 599

The next set of exercises illustrates how to compute the prepaid expense and fixed
asset balances for the balance sheet.

EXERCISE 12.7: COMPUTING PREPAID EXPENSE BALANCE
FOR EACH CAPITALIZED SUPPORT ITEM

1. Make a copy of qryNonInvExp03-PrepaidItems and save the copy as

qryPrepaidExpenses01-PrepaidsAndFixedAssets. Open qryPrepaidExpenses01-

PrepaidsAndFixedAssets in Design view. Change the second field from

IncomeStatementName to BalanceSheetName. Delete BeginningComputationDate

and PeriodExpense from the Criteria Pane. Save your changes to the query.

2. Compute the accumulated amortization/depreciation through the

EndingComputationDate, which is the earlier of the end of the reporting period or

the end of the asset’s useful life. Use Expression Builder to add the following field

to the Criteria Pane: AccumAmortAndDepr: DateDiff(“d”,[InventoryReceiptDate],

[EndingComputationDate])*[DailyExpense]. Open the Property Sheet and set the

Format to Currency and Decimal Places to 2. Save the query.

3. Compute the prepaid expense/fixed asset balance by subtracting the accumulated

amortization/depreciation from the purchase price. Use Expression Builder to add

the following field to the Criteria Pane: PrepaidExpense: [PurchaseLineExtension]-

[AccumAmortAndDepr]. In the Property Sheet, set the Format to Currency

and Decimal Places to 2. Save the query. See the Dynaset for the period between

3/1/2010 and 3/31/2010 in Figure 12.17.

EXERCISE 12.8: COMPUTING THE BALANCE SHEET AMOUNTS
FOR PREPAID EXPENSES

1. Click the Create tab and click Query Design in the Other group. Add

qryPrepaidExpenses01-PrepaidsAndFixedAssets to the Table Pane. Add the

following fields to the Criteria Pane: ResourceID, BalanceSheetName, and

PrepaidExpense. Type <“105” Or >“106” in the Criteria property for ResourceID

to prevent fixed assets from being selected. Save your query as

qryPrepaidExpenses02-PrepaidExpenseBalances.

2. Click Totals in the Show/Hide group. Change the Total cell for PrepaidExpense to

Sum. Save your changes (see Figure 12.18).

Fig. 12.17 Dynaset
for qryPrepaidEx-
penses01-PrepaidsAnd-
FixedAssets for
the period between
3/1/2010 and 3/31/2010. Microsoft product screen shot reprinted with permission from Microsoft Corporation.

600 Chapter 12: A Complete Accounting System for a Merchandising Company

3. Double-click mcrTempDate. Set the beginning and ending dates to 3/1/2010 and

3/31/2010, respectively. Run qryPrepaidExpenses02-PrepaidExpenseBalances.

Compare your dynaset to the dynaset in Figure 12.19. Notice how the two

prepaid insurance balances were combined. Why was the equipment balance not

computed? Close the query.

EXERCISE 12.9: COMPUTING THE BALANCE SHEET
AMOUNTS FOR FIXED ASSETS

1. Click the Create tab and click Query Design in the Other group. Add

qryPrepaidExpenses01-PrepaidsAndFixedAssets to the Table Pane. Add the

following fields to the Criteria Pane: PurchaseLineExtension, AccumAmortAndDepr,

PrepaidExpense, and ResourceID. Type Between “105” and “106” in the Criteria

property for ResourceID to select only fixed assets. Save your query as

qryPrepaidExpenses03-FixedAssets.

Fig. 12.18
qryPrepaidExpenses02-
PrepaidExpense-
Balances inDesign view.

Fig. 12.19 Dynaset
for qryPrepaid-
Expenses02-Prepaid-
ExpenseBalances for
the period between
3/1/2010 and 3/31/2010. Microsoft product screen shot reprinted with permission from Microsoft Corporation.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 601

2. Click Totals in the Show/Hide group. Change the Total cell for ResourceID to

Where. Change the Totals for the other three fields to Sum.

3. Open the Property Sheet. For each of the summed fields, set Format to Currency

and Decimal Places to 2. Save the query. Add the following captions: Property,

Plant, and Equipment for PurchaseLineExtension, Accumulated Depreciation for

AccumDeprAndAmort, and Property, Plant, and Equipment, Net for Prepaid

Expense. Save your changes.

4. Double-click mcrTempDate. Set the beginning and ending dates to 3/1/2010 and

3/31/2010, respectively. Run qryPrepaidExpenses03-FixedAssets and compare

your dynaset to the dynaset in Figure 12.20. Notice how the balances for the two

equipment purchases were combined. Close the query.

Now that the database has been modified to accommodate acquisitions for support
activities and compute the related financial statement balances, you are ready to tackle
financial statement balances that span multiple business processes.

Financial Statement Balances That Span
Multiple Business Processes
Pipefitters Supply Company’s income statement and balance sheet contain three balances
that span multiple business processes: cash, merchandise inventory, and “cost of goods
sold.” The merchandise inventory balance and cost of goods sold are based on a common
set of queries because cost of goods sold is the cost of inventory purchased that is sold, and
the ending inventory balance is the cost of inventory purchased that is not sold. In this
section, you will compute these three balances for reporting on financial statements.

Computing the Cash Balance

The cash balance is the first item that appears on most companies’ balance sheets. Al-
though the cash balance is affected by all exchanges (other than barter transactions) be-
tween an enterprise and its external partners, there are only two events that affect the
cash balance—cash receipts and cash disbursements. Pipefitters Supply Company re-
ceives cash from financing activities as loan proceeds from creditors and as contributed
capital from stockholders. Pipefitters also receives cash from customers in the sales/col-
lection process. Cash disbursements occur in Pipefitters’ financing process to repay loans
to creditors and to pay dividends to stockholders. The other cash disbursements occur in
the acquisition/payment process, to pay vendors for goods and services purchased, and
in the human resources (HR) process to pay its employees for their labor.

The balance in the cash account is computed in three queries: summing all cash re-
ceipts, summing all cash disbursements, and then subtracting the sum of the cash disbur-
sements from the sum of the cash receipts. Since cash is a balance-sheet item, the cash
receipts and cash disbursements are summed from the company’s inception through the
balance sheet date. Therefore, the summation queries will only have an ending date
constraint.

Fig. 12.20
Dynaset for
qryPrepaidExpenses03-
FixedAssets for the
period between
3/1/2010 and 3/31/2010.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

602 Chapter 12: A Complete Accounting System for a Merchandising Company

EXERCISE 12.10: USING QUERIES TO COMPUTE
THE CASH BALANCE

The first query sums cash receipts through the balance sheet date.

1. Click the Create tab and click Query Design in the Other group. Double-click

tblCashReceipt in the Show Table dialog box. Close the dialog box.

2. Add CashReceiptAmount and CashReceiptDate, respectively, to the Criteria Pane. Click

Totals in the Show/Hide group. Change the Total cell for InventoryReceiptAmount to

Sum. Open the Property Sheet and type Cash Receipts in the Caption property.

3. Change the InventoryReceiptDate Total to Where. In the Criteria cell of

InventoryReceiptDate, type <=[TempVars]![EndDate] to sum all purchases up

through the balance sheet date. Save your query as qryCash1-SumOfCR.

4. Check your query; run mcrTempDate. Set the beginning and ending dates to 1/1/2010

and 1/31/2010, respectively, and run qryCash1-SumOfCR. Total cash receipts on the

balance sheet date of 1/31/2010 should be $146,021.77. Close the query.

Create a query to compute the sum of the cash disbursements. It is similar to the query

used to compute the sum of the cash receipts.

5. Follow steps 1 through 4 above again and make the following changes (see

Figure 12.21).

• In Step 1, select tblCashDisbursement instead of tblCashReceipt.

• In Step 2, add CashDisbursementAmount and CashDisbursementDate,

respectively.

• In Step 3, save your query as qryCash2-SumOfCD.

• In Step 4, the total cash disbursements for a 1/31/2010 balance sheet date is

$32,022.50.

The third and final query uses the results of the two queries to compute the ending cash

balance.

6. Click the Create tab and click Query Design in the Other group. Add qryCash1-

SumOfCR and qryCash2-SumOfCD to the Table Pane. The fields in these two

queries are independent of one another and do not need to be joined.

7. Add to the Criteria Pane SumOfCashReceiptAmount from the qryCash1-SumOfCR

field roster and SumOfCashDisbursementAmount from the qryCash2-SumOfCD

field roster. Save your query as qryCash3-CashBalance.

8. Click the first available Field on the Criteria Pane. Click Builder in the

Query Setup group. Enter CashBalance: Nz([SumOfCashReceiptAmount],0) -

Nz([SumOfCashDisbursementAmount],0). Although Pipefitters would likely

have both cash receipts and cash disbursements within the first few days or

weeks of whenever it began business, we chose to use the Nz function so

that the cash balance could be calculated for any date (see the top panel of

Figure 12.22).

9. Open the Property Sheet. Set the Format to Currency and Decimal Places to 2.

Type Cash as the caption for your newly created field, CashBalance. Save your

query.

10. Run mcrTempDate. Set the beginning and ending dates to 1/1/2010 and 1/31/

2010, respectively, and run qryCash3-CashBalance. Your result should be

$113,999.27 (see the second panel of Figure 12.22). Close the query.

Computing the Inventory and Cost of Goods Sold Balances

Enterprises have two major decisions when it comes to computing inventory and cost of
goods sold (represented as “CoGS”). First, management must decide whether to use the
periodic method or the perpetual inventory method. Second, management must decide
which inventory cost flow assumption it will use: first-in-first-out (FIFO), last-in-first-
out (LIFO), weighted average, or specific identification.

Chapter 12: A Complete Accounting System for a Merchandising Company 603

Inventory Methods and Cost-Flow Assumptions

Under the periodic inventory method, ending inventory and CoGS are computed only at
the end of the accounting period, usually after a company takes a physical count of the
inventory on hand. Prior to the end of the period, companies use estimating techniques
to compute the inventory balance and/or CoGS. This was a popular technique prior to
computerized accounting systems. Most companies currently using computerized
accounting systems use the perpetual inventory method. Perpetual inventory methods
update the cost of goods sold and inventory balance after every sale. Clearly, this method
is far more computationally intensive than using the periodic method.

Fig. 12.21
qryCash2-SumOfCD
in Design view.

Fig. 12.22
qryCash3-CashBalance
in Design view and
dynaset for period
ended 1/31/2010.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

604 Chapter 12: A Complete Accounting System for a Merchandising Company

The second decision is to choose the inventory cost flow assumption. Under the spe-
cific identification method, each individual item in the inventory has a unique identifier
so that each item sold already has a cost (e.g., purchase price) associated with it. Pipefit-
ters cannot use this method because it only tracks inventory by type (e.g., 1-inch brass
elbow) rather than by assigning a unique number to each 1-inch brass elbow. Therefore,
Pipefitters, and most merchandisers, use either weighted average, LIFO, or FIFO.

Weighted average CoGS and ending inventory computations are relatively easy, be-
cause all you have to do is sum the quantity available for sale for each item; sum total
purchase prices for each item; and then divide the cost by the quantity of each item to
get the weighted-average unit cost for each item of inventory. Then, multiply the quan-
tity sold for each item by its weighted-average unit cost to get the cost of goods sold. The
inventory balance is simply the quantity on hand of each item multiplied by its
weighted-average unit cost. Weighted average presents two problems. First, the cost as-
signed to the unsold items will change every time the weighted-average computations are
performed. Second, the balances in CoGS and in ending inventory will change depending
on the frequency of the computations. Therefore, to have comparative numbers from
one period to the next, the computations must be performed every time an item is
sold. We will not demonstrate this method because computational challenges of updating
the inventory costs after each sale are beyond the scope of this book. However, you will
have a chance to build a set of queries to compute weighted-average CoGS and ending
inventory balances, without updating the cost assigned to ending inventory, as an end-
of-chapter exercise.

The first-in-first-out (FIFO) method assumes that the oldest goods, first items pur-
chased, are the first items sold. Thus, the ending inventory consists of the most recent
purchases. This is the most common inventory method used by businesses. One benefit
of this method is that the cost of goods sold and the ending inventory balances will be
the same regardless of how frequently these balances are computed. An advantage of
FIFO over weighted average is that costs assigned to ending inventory items do not
need to be updated. Although this method is challenging to implement in a relational
database without writing code, the process is straightforward. Therefore, we will imple-
ment a FIFO inventory system for Pipefitters Supply Company.

The remaining inventory costing method is last-in-first-out (LIFO). LIFO assumes
that the newest goods, last items purchased, are the first items sold. Therefore, CoGS
consists of the most recent purchases. Like FIFO, the cost assigned to ending inventory
items does not change. However, the cost of goods sold and the ending inventory bal-
ances will change depending on the frequency of the computations. Therefore, to have
comparative numbers from one period to the next, the computations must be performed
every time an item is sold. Although less challenging to implement than weighted aver-
age (no need to change the cost assigned to ending inventory items), the additional
queries and macros needed to update the ending inventory and CoGS after every sale
makes it more difficult to implement than FIFO. However, since the steps to implement
LIFO are similar to FIFO, you will have the opportunity to add LIFO inventory to Pipe-
fitters Supply Company’s database in the end-of-chapter problems.

Computing Ending Inventory

The first step in computing the ending inventory balance is to determine the quantity of
each item on hand at the end date, which can be the end of the accounting period or any
other date on which Pipefitters wishes to know its ending inventory balance. This step
requires three queries: (1) sum the quantity purchased by item through the end date,
(2) sum the quantity sold by item through the end date, and (3) subtract quantity sold

Chapter 12: A Complete Accounting System for a Merchandising Company 605

by item from quantity purchased by item to obtain the quantity on hand of each item.
This set of queries is similar to the queries in Exercise 12.1 used to compute the cash bal-
ance. The main difference is that you are computing a balance for each inventory item.

EXERCISE 12.11: COMPUTING QUANTITY OF INVENTORY
ITEMS ON HAND

The first query sums quantity purchased by item through the balance sheet date.

1. Click the Create tab and then click Query Design in the Other group. Add tblInflow-

PurchaseInventory and tblPurchase to the Table Pane. Add InventoryID, and

QuantityReceived from blInflow-PurchaseInventory to the Criteria Pane. From

tblPurchase, add PurchaseTypeID to the right of InventoryID and add

InventoryReceiptDate to the right of QuantityReceived.

2. Click Totals In the Show/Hide group. Change the Total cell for QuantityReceived to

Sum and the Total for InventoryReceiptDate to Where. Add “01” to the Criteria

cell of PurchaseTypeID to limit purchases to inventory purchases. Although the

link between tblPurchase and tblInflow-PurchaseInventory makes it unnecessary

to have PurchaseTypeID in the query, the PurchaseTypeID field is needed for

queries later in the computation process.

3. Add <=[TempVars]![EndDate] to the Criteria cell of InventoryReceiptDate to sum

all purchases through the balance sheet date. Save your query as qryInventory01-

SumQtyPurchByItem.

4. Run mcrTempDate. Set the beginning and ending dates to 1/1/2010 and 1/31/2010,

respectively, and run qryInventory01-SumQtyPurchByItem. You should have 50

records in your dynaset. Close the query.

Create a query to compute quantity sold by item through the balance sheet date. It is

very similar to the query to compute the sum of the cash receipts.

5. Follow steps 1 through 4, above, making the following changes.

• In Step 1, select tblOutflow-SaleInventory and tblSale. Add InventoryID,

QuantitySold, and ShippingDate, respectively.

• In Step 2, add Sum to QuantitySold and Where to ShippingDate.

• In Step 3, Add <=[TempVars]![EndDate] to the Criteria cell of ShippingDate.

Save your query as qryInventory02-SumQtySoldByItem (see Figure 12.23).

• In Step 4, you should have 39 records for a 1/31/2010 balance sheet date.

The third and final query uses the results of the two queries to compute the quantity

on hand.

6. Click the Create tab and click Query Design in the Other group. Add

qryInventory01-SumQtyPurchByItem and qryInventory02-SumQtySoldByItem to

the Table Pane. Create an outer join between the two queries using InventoryID

to select all items from qryInventory01-SumQtyPurchByItem and those items that

match qryInventory02-SumQtySoldByItem (see Figure 12.24). Add to the Criteria

Pane InventoryID from the qryInventory01-SumQtyPurchByItem field roster.

7. Use the Nz function for quantity purchased and quantity sold to allow computations if one

of the values is null. Click the first available Field on the Criteria Pane. Enter QtyPurchased:

Nz([SumOfQuantityReceived],0). In the next available column, enter QtySold: Nz

([SumOfQuantitySold],0). Save the query as qryInventory03-QtyOnHandByItem.

8. Use Expression Builder to enter the last expression: QtyOnHand: [QtyPurchased] –

[QtySold]. Save your query (see Figure 12.24).

9. Run mcrTempDate using 1/1/2010 and 1/31/2010 as the beginning and ending

dates, respectively, and run qryInventory03-QtyOnHandByItem. You should have

50 records in your dynaset. Close the query.

606 Chapter 12: A Complete Accounting System for a Merchandising Company

The FIFO inventory cost flow method assumes that the inventory on hand, the unsold
inventory, are the most recent items purchased. Therefore, to compute the cost of ending
inventory, we need to identify for each inventory item the quantity, cost per item, and
date purchased in descending order by date. Then, we can assign the quantity on hand
to the most recent purchases until all units on hand have been assigned.

Look at purchases related to Item 1002 in Figure 12.25. First, we used a make-table
query to create the listing of items purchased, grouped by item, and sorted in descending
order by date. We added a column for quantity unassigned and gave the column an ini-
tial value of −1 to indicate that no activity had taken place in that cell. We also created a
quantity assigned column and assigned an initial value of 0, indicating that none of the
units on hand had been assigned to that particular purchase. Next, we placed the quan-
tity on hand, 85 units, into the QtyUnassigned cell for the most recent purchase. We
then assigned the lesser of the quantity purchased or the unassigned items. Since there
were 85 items on hand and the most recent purchase was for only 30 items, we assigned
30 items to the 3/8/2010 purchase. The 55 remaining unassigned items (85 – 30 = 55)

Fig. 12.23
qryInventory02-
SumQtySoldByItem
in Design view.

Fig. 12.24
qryInventory03-
QtyOnHandByItem
in Design view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 607

are then entered for the 2/19/2010 purchase. We assigned 40 units to this purchase be-
cause the 40 items purchased was less than the 55 items unassigned. The remaining 15
unassigned items were entered in the QtyUnassigned column of the 2/9/2010 purchase.
All 15 remaining items were assigned to the 2/9/2010 purchase because more than 15
items were purchased on 2/9/2010.

After the inventory on hand is assigned to the most recent purchases, we will create a
query to compute the line extension, QtyAssigned × InventoryReceiptPrice, for all inven-
tory on hand (QtyAssigned > 0). Finally, we will sum the line extensions to get the end-
ing inventory balance for the balance sheet. We can also compute the ending inventory
by item for internal purposes, though we will not do that here.

EXERCISE 12.12: ASSIGNING QUANTITIES ON HAND
TO THE MOST RECENT PURCHASES

1. Create a Make Table query similar to qrySumOfPOLineExtensionsByIR in Exercise

9.35, in order to create a table like what appears in Figure 12.25. This table will be

used to assign items on hand to the most recent purchases. Click the Create tab

and click Query Design in the Other group. Add tblInflow-PurchaseInventory and

tblPurchase to the Table Pane. Add to the Criteria Pane InventoryID and

QuantityReceived, and InventoryReceiptPrice from tblInflow-PurchaseInventory,

and InventoryReceiptDate from tblPurchase. Enter <=[TempVars]![EndDate] as

the Criteria for InventoryReceiptDate. Save the query as qryInventory04-

MakeCostOfEndInvTable.

Fig. 12.25
tblInventory-Compute-
CostOfItemsOnHand
in Datasheet view for
the period ended
3/31/2010.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

608 Chapter 12: A Complete Accounting System for a Merchandising Company

2. Add fields for quantity unassigned and for quantity assigned and populate them

with an initial value. In the first two available columns in the Criteria Pane, enter

QtyUnassigned: -1 and QtyAssigned: 0, respectively (see Figure 12.26). Save your

changes.

3. Click Make Table in the Query Type group and enter tblInventory-

ComputeCostOfItemsOnHand as shown in the Make Table dialog box in Figure

12.26. Save the query. Run mcrTempDate using 1/1/2010 and 3/31/2010 as the

beginning and ending dates, respectively, and double-click qryInventory04-

MakeCostOfEndInvTable to run it. Click Yes in the warning dialog boxes. Open

tblInventory-ComputeCostOfItemsOnHand to verify that it has 172 records. Notice

that QtyUnassigned is populated with -1s and QtyAssigned is populated with 0s.

Close the table.

The next few queries populate the QtyUnassigned for the most recent purchase of each

item in tblInventory-ComputeCostOfItemsOnHand with quantity on hand.

4. Click the Create tab and click Query Design in the Other group. Add tblPurchase,

tblInflow-PurchaseInventory and qryInventory03-QtyOnHandByItem to the Table

Pane. Link tblInflow-PurchaseInventory and qryInventory03-QtyOnHandByItem on

InventoryID. Save your query as qryInventory05-MakeTableForFirstQtyUnassigned.

5. Add the fields in Figure 12.27 to the Criteria Pane. Enter <=[TempVars]![EndDate]

as the Criteria for InventoryReceiptDate. Click Totals in the Show/Hide group.

Change the Total of InventoryReceiptDate to Max to select the most recent

purchase on or before the balance sheet date. Click Make Table in the Query

Type group and enter tblInventory-UpdateQtyUnassigned as shown in the Make

Table dialog box in Figure 12.27. Save the query.

6. Run mcrTempDate using 1/1/2010 and 3/31/2010 as the beginning and ending dates,

respectively, and double-click qryInventory05-MakeTableForFirstQtyUnassigned to

run it. Click Yes in the warning dialog boxes. Close the query. Open tblInventory-

UpdateQtyUnassigned to verify that it has 58 records. Close the table.

7. Use the values in tblInventory-UpdatedQtyUnassigned to update tblInventory-

ComputeCostOfItemsOnHand. Create a new query. Add tblInventory-

ComputeCostOfItemsOnHand and tblInventory-UpdateQtyUnassigned to the Table

Pane. Connect the two tables on InventoryID and by their date fields—

InventoryReceiptDate and MaxOfInventoryReceiptDate—to update the most

recent purchase of each item in tblInventoryComputeCostOfItemsOnHand. Click

Update in the QueryType group. Add QtyUnassigned from tblInventory-

ComputeCostOfItemsOnHand to the Criteria Pane. Enter [tblInventory-

UpdateQtyUnassigned].[QtyOnHand] In the Update To cell. Save the query as

qryInventory06-UpdateFirstQtyUnassigned.

8. Copy qryInventory06-UpdateFirstQtyUnassigned and save it as qryInventory07-

UpdateFirstQtyAssigned. Change the Field name in the Criteria Pane to QtyAssigned.

Replace the Update To cell with the following expression that assigns the lesser of

the quantity purchased or the quantity on hand to QtyAssigned: IIf([QuantityReceived]

<[QtyUnassigned],[QuantityReceived],[QtyUnassigned]) (see Figure 12.28). Save and

close the query.

9. Run mcrTempDate using 1/1/2010 and 3/31/2010 as the beginning and ending dates.

Run qryInventory04-, qryInventory05-, qryInventory06-, and qryInventory07-,

respectively. (We will use this shortcut notation to refer to consecutively numbered

queries and tables with long names to make them easier to read.) Click Yes in the

warning dialog boxes. Open tblInventory-UpdateQtyUnassigned to verify that the

QtyUnassigned and QtyAssigned are updated for the most recent purchase (see

Figure 12.29). Close the table.

Chapter 12: A Complete Accounting System for a Merchandising Company 609

Fig. 12.26
qryInventory04-
MakeCostOf-
EndInvTable in
Design view.

Fig. 12.27
qryInventory05-
MakeTableForFirstQty-
Unassigned in Design
view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

610 Chapter 12: A Complete Accounting System for a Merchandising Company

Fig. 12.28
qryInventory07-
UpdateFirstQty
Assigned in Design
view.

Fig. 12.29 First 27
records of tblInventory-
ComputeCostOfItems-
OnHand after initial
update.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 611

The ending-inventory-computation table is now set up and updated for the initial
quantities unassigned and assigned. In Exercise 12.13, we will create queries to update
the quantity unassigned by item—quantity on hand less the sum of all items assigned.
Then, Exercise 12.14 will illustrate how to use macros to repeat this process until all
items on hand are assigned to the appropriate purchases.

EXERCISE 12.13: UPDATING QTYASSIGNED AND
QTYUNASSIGNED IN TBLINVENTORY-
COMPUTECOSTOFITEMSONHAND

1. Use Figure 12.30 to create a query to sum quantity assigned by item. Remember

to click Totals in the Show/Hide group to add the Total row to the Criteria Pane.

Save your query as qryInventory08-SumOfQuantityAssigned.

2. Update the quantity unassigned by subtracting total quantity assigned from

quantity on hand. Create a new query in Design view. Add qryInventory03-

QtyOnHandByItem and qryInventory08-SumOfQuantityAssigned to the Criteria

Pane. Join the two queries on InventoryID. Add InventoryID from qryInventory08-,

QtyOnHand from qryInventory03-, and SumOfQtyAssigned from qryInventory08-,

respectively. Save the query as qryInventory09-UpdatedQtyUnassigned. Use

Expression Builder to add NewQtyUnassigned: [QtyOnHand]-[SumOfQtyAssigned]

to the Criteria Pane. Save and close the query.

3. Create a Make Table query similar to qryInventory05-MakeTableForFirstQtyUnassigned

that will replace the old tblInventory-UpdateQtyUnassigned with a new version for

each update iteration. Use Figure 12.31 as a guide. The Criteria of >0 for

NewQtyUnassigned in qryInventory09- only allows inventory items that have

quantities unassigned to be selected. Additionally, the Criteria of -1 for QtyUnassigned

in tblInventory- requires that the most recent purchase date for each item to be

selected from purchases that have not yet had items assigned to it. Save your query

as qryInventory10-MakeTableForUpdatedQtyUnassigned. Close the query.

4. Run mcrTempDate using 1/1/2010 and 3/31/2010 as the beginning and ending

dates and run qryInventory10-. Open tblInventory-UpdateQtyUnassigned. Notice

that it now has only 26 records. Why?

5. Create a query similar to qryInventory06-UpdateFirstQtyUnassigned that will

use the values in tblInventory-UpdatedQtyUnassigned to update tblInventory-

ComputeCostOfItemsOnHand. Use Step 7 in Exercise 12.13 and Figure 12.32 to

guide you. Name your query qryInventory11-UpdateNextOldestQtyUnassigned.

6. Create a query similar to qryInventory07-UpdateFirstQtyAssigned that will

use the values in tblInventory-UpdatedQtyUnassigned to update tblInventory-

ComputeCostOfItemsOnHand. Use steps 7 and 8 in Exercise 12.13 and Figure 12.33

to guide you. Name your query qryInventory12-UpdateNextOldestQtyAssigned.

7. Run mcrTempDate using 1/1/2010 and 3/31/2010 as the beginning and ending

dates and run qryInventory11- and qryInventory12-. Open tblInventory-

ComputeCostOfItemsOnHand. Notice that no additional records for Item 1001

were updated, while a second record for Item 1002 was updated (see Figure

12.34). Why?

612 Chapter 12: A Complete Accounting System for a Merchandising Company

Fig. 12.30
qryInventory08-
SumOfQuantity-
Assigned in
Design view.

Fig. 12.31 qryInven-
tory10-MakeTableFor-
UpdatedQtyUnassigned
in Design view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 613

Fig. 12.32
qryInventory11-
UpdateNext-
OldestQtyUnassigned
in Design view.

Fig. 12.33
qryInventory12-
UpdateNext-
OldestQtyAssigned
in Design view.

Fig. 12.34 Records
for Items 1001 and
1002 in tblInventory-
ComputeCostOfItems-
OnHand after one
subsequent update.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft

Co
rp
or
at
io
n.

614 Chapter 12: A Complete Accounting System for a Merchandising Company

EXERCISE 12.14: COMPLETING THE COMPUTATION
FOR ENDING INVENTORY BALANCE

Queries qryInventory08-, qryInventory09-, qryInventory10-, qryInventory11-, and qryIn-

ventory12- need to be run together until all inventory on hand are assigned. Once the as-

signment process is complete, line extensions are computed for inventory on hand.

Finally, the line extensions are summed to produce the ending inventory balance.

1. Create a macro to run qryInventory08-, qryInventory09-, qryInventory10-,

qryInventory11-, and qryInventory12-. Click the Create tab and click Macro in the

Other group. Click Show All Actions in the Show/Hide group, because the Set

Warnings action is not available in the default set of actions. In the Action column

of the first row, type SetWarnings. Leave the default setting, No, to suppress

warning dialog boxes. Add three Open Query Actions, as indicated in Figure 12.35,

to run qryInventory10-, qryInventory11-, and qryInventory12-. We do not need to

add qryInventory08- and qryInventory09- because they will be run from within

qryInventory10-. Since this macro will be run from within the main inventory

macro, save it as mcrInventory02-UpdateComputeEndInvTable. Close the macro.

2. Create the main inventory macro. Click the Create tab and click Macro in the Other

group. Click Show All Actions in the Show/Hide group in the Action column of the

first row, type SetWarnings. Leave the default setting to No. Add four Open Query

Actions as indicated in Figure 12.36 to run qryInventory01- through

qryInventory07-. We do not need to add qryInventory01-, qryInventory02-, and

qryInventory03- because they will be run from within qryInventory04-. Save the

macro as mcrInventory01-EndingInventory.

3. Add a Macro Action to keep running mcrInventory02- until tblInventory-

ComputeCostOfItemsOnHand is completely updated. Type RunMacro in the next

available Action cell and select mcrInventory02-UpdateComputeEndInvTable in

the Macro Name cell in the Action Arguments pane. We will use the DCount

function in the Repeat Expression argument to run mcrInventory02- in succession

until tblInventory-UpdateQtyUnassigned does not have any records in it. When

this occurs, the DCount function will be false and mcrInventory02- will stop

running. Enter DCount(“[InventoryID]”,”[tblInventory-UpdateQtyUnassigned]”) in

Repeat Expression. Save and close the macro.

4. Run mcrTempDate using 1/1/2010 and 3/31/2010 as the beginning and ending

dates and run mcrInventory01-. Open tblInventory-UpdateQtyUnassigned. Notice

that there are no records in this table. Why? Close the table. Now, open

tblInventory-ComputeCostOfItemsOnHand. It should look like the datasheet in

Figure 12.25. Scroll through to see that all inventory on hand was properly

assigned to the most recent purchases for each item.

5. Create a new query in Design view to compute the inventory-on-hand line

extensions. Add tblInventory-ComputeCostOfItemsOnHand to the Table Pane.

Add InventoryID, InventoryReceiptPrice, and QtyAssigned to the Criteria Pane.

Save your query as qryInventory13-InvOnHandLineExtension. Enter the

expression to compute the line extension in the next column of the Criteria Pane:

InvOnHandLineExtension: [InventoryReceiptPrice]*[QtyAssigned]. Save the query.

When you run the query, why are many of the line extensions $0.00?

6. Sum the line extensions to arrive at the ending inventory balance. Create a new

query in Design view. Add qryInventory13-InvOnHandLineExtension to the Table

Pane. Add InvOnHandLineExtension to the Criteria Pane. Click Totals in the Show/

Hide group. Change the Total cell to Sum. Open the Property Sheet and enter

Inventory as the Caption property. Save your query as qryInventory14-

EndingInventory. Close the query.

7. Open mcrInventory01-EndingInventory in Design view to add the last step to the

macro. Add another OpenQuery Action and select qryInventory14-EndingInventory

Chapter 12: A Complete Accounting System for a Merchandising Company 615

in the Query Name control. Since this macro will be run as part of a macro to

generate financial statements, add a Close Action to close qryInventory14- after the

macro runs (see Figure 12.36).

8. Test your ending inventory queries and macros. Run mcrTempDate using 2/1/2010

and 2/28/2010 as the beginning and ending dates. Double-click mcrInventory01-

EndingInventory to run it. Then double-click qryInventory14-EndingInventory to

verify the ending inventory balance of $30,499.52.

Computing Cost of Goods Sold

When using the FIFO inventory method, the inventory items that make up CoGS are the
oldest of the goods available for sale (GAS). This is difficult to compute directly because
we need to know which items are on hand at the beginning of the period. However, be-
cause we know the quantity sold and the quantity on hand at the end of the period, we
can compute the quantity available for sale by adding quantity sold to the ending quan-
tity on hand. Since the quantity available for sale are the most recent items purchased,
we can compute the cost of GAS using the same method we used to compute ending
inventory. Once we have a value for GAS, we can compute CoGS by subtracting ending
inventory from GAS.

EXERCISE 12.15: COMPUTING COST OF GOODS
AVAILABLE FOR SALE

Compute the quantity of goods available for sale by item and assign these quantities to

the most recent purchase line items. These queries are very similar to the queries you

created for ending inventory.

1. Use Exercise 12.11, steps 1 and 2 (for qryInventory01-SumQtyPurchByItem), and

Figure 12.37 for guidance to sum quantity sold by item for the reporting period.

Name the query qryCoGS01-SumQtySoldByItem. Notice that the ShippingDate

Criteria specifies the period between the beginning and end of the period instead

of on or before the end date. Why?

Fig. 12.35
mcrInventory02-
UpdateCompute-
EndInvTable
in Design view.

Fig. 12.36
mcrInventory01-
EndingInventory in
Design view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

616 Chapter 12: A Complete Accounting System for a Merchandising Company

2. Create a query to add quantity on hand to quantity sold to arrive at quantity

available for sale. Use Exercise 12.11, steps 6 through 8 (for qryInventory03-

QtyOnHandByItem), and Figure 12.38 for guidance. Create the outer join by

dragging InventoryID from qryInventory03-QtyOnHandByItem to qryCoGS01-

SumQtySoldByItem and selecting Option 2 in the Join Properties dialog box.

Save the query as qryCoGS02-QtyAvailableForSale.

3. Run mcrTempDate using 1/1/2010 and 1/31/2010 as the beginning and ending

dates, respectively, and run qryCoGS02-QtyAvailableForSale. You should have

50 records in your dynaset. Close the query.

Assign quantities on hand to the most recent purchases.

4. Make a copy of query qryInventory04-MakeCostOfEndInvTable and name it

qryCoGS03-MakeCostOfGASTable. Click Make Table in the Query Type group and

change the table name to tblCoGS03-ComputeCostOfGAS. Save and close the query.

5. Make a copy of qryInventory05-MakeTableForFirstQtyUnassigned and name it

qryCoGS04-MakeTableForFirstQtyUnassigned. Open qryCoGS04- in Design view.

Add qryCoGS02-QtyAvailableForSale to the Table Pane. Change the Table for

QuantityOnHand to qryCoGS02- and change the Field to QtyAvailableForSale.

Delete qryInventory03-QtyOnHandByItem from the Table Pane. Link tblInflow-

PurchaseInventory to qryCoGS02- by InventoryID. Click Make Table in the Query

Type group and change the table name to tblCoGS03-ComputeCostOfGAS (see

Figure 12.39). Save and close the query.

6. Create two queries to update the quantities unassigned and assigned for the

most recent purchase using quantity of GAS. Use Figure 12.40 and Exercise

12.12, steps 7 and 8, to create qryCoGS05-ComputeFirstQtyUnassigned and

qryCoGS06-UpdateFirstQtyAssigned.

7. Use Figure 12.41 and Exercise 12.13, Step 1, to create a query to sum quantities

assigned by item. Save the query as qryCoGS07-UpdateFirstQtyAssigned.

8. Use Figure 12.42 and Exercise 12.13, Step 2, to create qryCoGS08-

UpdatedQtyUnassigned.

9. Use Figure 12.43 and Exercise 12.13, Step 3, to create the Make Table query

qryCoGS09-MakeTableForUpdatedQtyUnassigned.

10. Create two Update queries to update QtyUnassigned and QtyAssigned in tblCoGS-

ComputeCostOfGAS. The queries are similar to the ones you created in Step 7.

Use Figure 12.44 as a guide. Name the queries qryCoGS10-

UpdateNextOldestQtyUnassigned and qryCoGS11-UpdateNextOldestQtyAssigned.

Fig. 12.37
qryCoGS01-
SumQtySoldByItem
in Design view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 617

Fig. 12.38
qryCoGS02-
QtyAvailableForSale
in Design view.

Fig. 12.39
qryCoGS04-MakeTable-
ForFirstQtyUnassigned
in Design view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

618 Chapter 12: A Complete Accounting System for a Merchandising Company

Fig. 12.40
qryCoGS05-Update-
FirstQtyUnassigned
and qryCoGS06-
UpdateFirstQty-
Assigned in
Design view.

Fig. 12.41
qryCoGS07-
SumOfQtyAssigned
in Design view.

Fig. 12.42
qryCoGS08-UpdateQty-
Unassigned in Design
view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 619

EXERCISE 12.16: COMPLETING THE COMPUTATION
FOR COST OF GOODS SOLD

1. Create a macro to run qryCoGS07-, qryCoGS08-, qryCoGS09-, qryCoGS10-, and

qryCoGS11-. Click the Create tab and click Macro in the Other group. Click Show

All Actions in the Show/Hide group. Add a SetWarnings Action. Add three Open

Query Actions as indicated in Figure 12.45 to run qryCoGS09-, qryCoGS10-, and

qryCoGS11-. Save the macro as mcrCoGS02-UpdateComputeGASTable. Close the

macro.

2. Create the main CoGS macro. Click the Create tab and click Macro in the Other

group. Use Figure 12.46 as a guide. Add four OpenQuery Actions for qryCoGS03-

through qryCoGS06-. Save the macro as mcrCoGS01-CoGS.

3. Add a Macro Action to keep running mcrCoGS02- until tblCoGS-

ComputeCostOfGAS is completely updated. Type RunMacro in the next available

Fig. 12.43
qryCoGS09-MakeTable-
ForUpdatedQtyUnas-
signed in Design view
and Form view.

Fig. 12.44
qryCoGS10-
UpdateNext-
OldestQtyUnassigned
and qryCoGS11-
UpdateNextOldest-
QtyAssigned in
Design view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

620 Chapter 12: A Complete Accounting System for a Merchandising Company

Action cell and select mcrCoGS02-UpdateComputeGASTable in the Macro Name

cell in the Action Arguments pane. Enter DCount(“[InventoryID]”,”[tblCoGS-

UpdateQtyUnassigned]”) in Repeat Expression. Save and close the macro.

4. Run mcrTempDate using 3/1/2010 and 3/31/2010 as the beginning and ending

dates and Run mcrCoGS01-. Open tblCoGS-UpdateQtyUnassigned. There should

not be any records in this table. Close the table. Now open tblCoGS-

ComputeCostOfGAS. It should look like the datasheet in Figure 12.47. Scroll

through it to see that all inventory available for sale have been properly assigned

to the most recent purchases for each item.

5. Create a new query in Design view to compute the GAS line extensions. Add

tblCoGS-ComputeCostOfGAS to the Table Pane. Add InventoryID,

InventoryReceiptDate, and QtyAssigned to the Criteria Pane. Save your query as

qryCoGS12-GASLineExtension. Enter the expression to compute the line

extension in the next column of the Criteria Pane: GASLineExtension:

[InventoryReceiptPrice]*[QtyAssigned]. Save and close the query.

6. Sum the line extensions to arrive at the GAS balance. Create a new query in

Design view. Add qryCoGS12-GASLineExtension to the Table Pane. Add

GASLineExtension to the Criteria Pane. Click Totals in the Show/Hide group.

Change the Total cell to Sum. Open the Property Sheet and enter Goods

Available for Sale as the Caption property. Save your query as qryCoGS13-

GoodsAvailableForSale. Close the query.

7. Create a new query in Design view to compute the cost of goods sold balance. Use

Figure 12.48 as a guide. Enter the following expression for cost of goods sold:

CostOfGoodsSold: [SumOfGASLineExtension]-Nz([SumOfInvOnHandLineExtension],0).

Open the Property Sheet and enter Cost of Goods Sold as its Caption property. Save

your query as qryCoGS14-CostOfGoodsSold and close the query.

8. Open mcrCoGS01-CoGS in Design view to add the last steps to the macro as

shown in Figure 12.46. Save the macro.

9. Test your CoGS queries and macros. Run mcrTempDate using 2/1/2010 and

2/28/2010 as the beginning and ending dates. Then run mcrInventory01-

EndingInventory and mcrCoGS01-CoGS, respectively. Why is it necessary to run

mcrInventory01- to compute CoGS? Then double-click qryCoGS14-

CostOfGoodsSold to verify a cost of goods sold of $27,144.68.

Fig. 12.45
mcrCoGS02-Update-
ComputeGASTable in
Design view.

Fig. 12.46
mcrCoGS01-CoGS in
Design view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

Chapter 12: A Complete Accounting System for a Merchandising Company 621

The ending inventory and cost of goods sold computations are now complete.

Creating Income Statement and Balance
Sheet Reports
In Chapters 8 through 11, you derived financial statement balances related to the sales/
collection process, acquisition/payment process, HR process, and the financing process.
Additionally, in Chapter 12, you derived financial statement balances related to support
activities as well as balances that span multiple business processes. Now, you are finally
ready to put them all together in an income statement report and a balance sheet report.
One of the advantages of using a database for an accounting information system is that
these reports can be run for any period of time.

Fig. 12.47 tblCoGS-
ComputeCostOfGAS in
Datasheet view for the
period between
3/1/2010 and 3/31/2010.

Fig. 12.48
qryCoGS14-
CostOfGoodsSold
in Design view.

M
ic
ro
so
ft
pr
od
uc
ts
cr
ee
n
sh
ot
re
pr
in
te
d

w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft

Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

622 Chapter 12: A Complete Accounting System for a Merchandising Company

Creating an Income Statement Report

We can use Report Wizard to help us create an income statement report. To use the
wizard effectively, we will create an income-statement query. This query contains all the
information we need other than the support expenses. The support expenses are in a
form that lends itself to using a subreport, which is like a subform. Therefore, we will
add a subreport for the support expenses after creating the main income-statement re-
port. Additionally, we need a query to compute the sum of the support expenses so
that we can use it in the income statement query to compute net income. Queries from
prior end-of-chapter problems that are required for the income statement are included in
your Chapter 12 database.

EXERCISE 12.17: CREATING QUERIES FOR THE INCOME
STATEMENT REPORT

1. Create a new query in Design view to sum the support expenses. Add

qryNonInvExp05-SumImmediatesAndPrepaids to the Table Pane. Add

IncomeStatementExpense to the Criteria Pane. Click Totals in the Show/Hide

group. Change the Total cell to Sum. Save your query as qryNonInvExp06-

TotalNonInventoryExpenses.

2. Replace the date criteria in the following queries from Chapters 8 through 11 that

will be used in the income statement query with the temporary variables created

in mcrTempDate to Between [TempVars]![BeginDate] And [TempVars]![EndDate]:

• qrySales1-Sales (Chapter 8): Change the Criteria for ShippingDate.

• qryGrossPay (Chapter 10), which is used by qryPayrollExpenses: Change the

Criteria for LAPayPeriodEnded.

• qryInterestExpense (Chapter 11 Practice Exercise 2; see Figure 12.49): Change

the Criteria for CashDisbursementDate.

3. Create a new query in Design view for the income statement report. Add the

following queries to the Table Pane: qrySales1-Sales, qryCoGS14-CostOfGoodsSold,

qryPayrollExpenses, qryNonInvExp06-TotalNonInventoryExpenses, and qryInterest-

Expense. Add SumOfSaleAmount from qrySales1-, and CostOfGoodsSold from

qryCoGS14- to the Criteria Pane. Save the query as qryIncomeStatement.

4. Compute gross profit in the next column within the Criteria Pane: GrossProfit:

[SumOfSaleAmount]-[CostOfGoodsSold]. Open the Property Sheet and set the

Caption property to Gross Profit.

5. Add all of the operating expenses to the Criteria Pane: SumOfGrossPay, SumOfFICA,

and SumOfMedicare from qryPayrollExpenses; and SumOfIncomeStatementExpense

from qryNonInvExp06-. Save your changes. Use Expression Builder to compute total

operating expenses: TotalOperatingExpenses: [SumOfFICA]+[SumOfGrossPay]

+[SumOfMedicare]+[SumOfIncomeStatementExpense]. Set the Caption property to

Total Operating Expenses. Save your changes.

6. Use Expression Builder in the next column within the QBE grid (another name for

Criteria Pane) to compute operating income: OperatingIncome: [GrossProfit]-

[TotalOperatingExpenses]. In the Property Sheet, set the Caption property to

Operating Income.

7. Add SumOfInterestAmount from qryInterestExpense to the QBE grid. Save the

query. Use Expression Builder in the next column within the QBE grid to compute

net income: NetIncome: [OperatingIncome]-Nz([SumOfInterestAmount]). In the

Property Sheet, set the Caption property to Net Income. Save your changes.

8. Test your query. Run mcrTempDate using 3/1/2010 and 3/31/2010 as the beginning

and ending dates. Then double-click qryIncomeStatement. You should have the

same dynaset, as shown in Figure 12.50.

Chapter 12: A Complete Accounting System for a Merchandising Company 623

EXERCISE 12.18: CREATING THE INCOME STATEMENT
REPORT AND SUBREPORT USING
REPORT WIZARD

Create the rptIncomeStatement using Report Wizard.

1. Click qryIncomeStatement in the Unassigned Objects section of the Navigation

Pane. Click the Create tab and click Report Wizard in the Reports group. Click >>

to select all available fields.

2. Click Next three times, which will take you to the layout dialog box. Click

Columnar from the Layout options. Leave the Orientation set to Portrait, and

leave the box checked to adjust the field width to fit all fields on one page.

3. Click Next twice to take you to the last dialog box. Name your report

rptIncomeStatement. Click Finish. Click Close Print Preview to return to Design

view. Your report should look like the one in Figure 12.51. Close the report.

Create a subreport for the support expenses using Report Wizard.

4. Click qryNonInvExp05-ImmediatesAndPrepaids in the Unassigned Objects section

of the Navigation Pane. Click the Create tab and click Report Wizard in the Reports

group. Double-click IncomeStatementName and IncomeStatementExpense to select

them.

5. Click Next twice, which will take you to the sorting dialog box. Sort by

IncomeStatementName in Ascending order.

6. Click Next three times to take you to the last dialog box. Name your report

rsubIncomeStatement. Click Finish. Notice that all of the support expenses are

displayed. Click Close Print Preview to return to Design view. Your report should

look like the one in Figure 12.52. Close the report.

Fig. 12.49
qryInterestExpense in
Design view.

Fig. 12.50
qryIncomeStatement in
Design view.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

624 Chapter 12: A Complete Accounting System for a Merchandising Company

EXERCISE 12.19: COMPLETING THE INCOME STATEMENT
SUBREPORT

1. Open rsubIncomeStatement in Design view. Use Figure 12.53 as a guide. Press

Ctrl+A to select all labels and controls in the report. Click the Arrange tab and

click Remove in the Control Layout group.

2. Open the Property Sheet. Report should be displayed in the Property Sheet

combo box. Click the Format tab and change the value of Scroll Bars to None to

prevent them from being displayed in the main report.

3. Delete the title in the Report Header. Delete the Report Header area by clicking

and dragging the top of the Page Header bar up until it meets the Report Header

bar. Delete the two labels in the Page Header. Remove the Page Header by

clicking and dragging the top of the Detail bar up until it meets the Page Header

bar. Delete the two controls in the Page Footer and remove the Page Footer.

4. Change the font on both controls to Calibri and the font size to 12. Left Justify

(Text Align on the Format tab of the Property Sheet) IncomeStatementName and

Right Justify IncomeStatementExpense. You can either use the Font section on

the Home ribbon or use the Format tab on the Property Sheet. Change the font

color for IncomeStatementName to #5C83B4, the same color as the labels in

rptIncomeStatement. Save and close the report.

Fig. 12.51
rptIncomeStatement in
Design view after run-
ning Report Wizard.

Fig. 12.52
rsubIncomeStatement
in Design view after
running Report
Wizard.

M
ic
ro
so
ft
pr
od
uc
ts
cr
ee
n
sh
ot
re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 625

EXERCISE 12.20: COMPLETING THE INCOME STATEMENT
REPORT

1. Open rptIncomeStatement in Design view. Use Figures 12.54 and 12.55 to guide

you. Click and drag the right edge of the Report Detail to make it 7-1/2 inches

wide. Press Ctrl+A to select all labels and controls in the report. Click the Arrange

tab and click Remove in the Control Layout group. Delete the two controls in the

Page Footer and remove the Page Footer.

2. Change the font size of the Report Header title to 16. Change the title to Pipefitters

Supply Company and Center Justify it. Also, center the title in the Report Header.

Drag the top of the Page Header bar down until the Report Header area is 1-1/8

inches tall (one line past the 1-inch mark). Make a copy of the Pipefitters Supply

Company title and place it directly below the original. Change the name to

Income Statement. Make a second copy of the title and change the text to For the

Period between. Make one last copy of the title. Change the name to and and

resize the control box to just fit the word inside it.

3. Add the temporary variables for the dates to the Report Header. Click Text Box in the

Controls group. Click inside the Report Header to create a text box control. Delete the

label. Open the Property Sheet and type =[TempVars]![BeginDate] in the Record

Source box. Make a copy of this control and change its Record Source to =

[TempVars]![EndDate]. Arrange the titles and controls as they appear in Figure 12.54

and 12.55. Make sure all of the text is Center Justified. Save your changes to the report.

4. Select all of the labels and controls in the Detail section. Change the font size to 12.

Left Justify the labels and Right Justify the controls. Arrange the labels and controls

Fig. 12.53
Completed
rsubIncomeStatement
in Design view and
Report view for the
period between
3/1/2010 and
3/31/2010.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

626 Chapter 12: A Complete Accounting System for a Merchandising Company

as they appear in Figures 12.54 and 12.55. Delete the OtherOperatingExpenses

label and control. Make the gap between Medicare Tax Expense and

TotalOperatingExpenses about 1-1/8 inches by moving the last three items down. This

is where you will insert the subreport. Use the Line tool in the Controls group to create

the horizontal lines. If you cannot see the line in Report view, change the Border Style

on the Format tab of the Property Sheet to Solid and the Border Color to #000000

(black). You only need to create one line and then copy it to create the other lines.

5. Insert the subreport. Click Subform/Subreport in the Controls group. Click and

drag from just below the bottom left corner of the Medicare Tax Expense label to

just above the top right corner of the OperatingExpense control. In the first dialog

box, select Use an existing report or form. Click rsubIncomeStatement and click

Next. Select Define my own in the linking dialog box and click Next. Then click

Finish. Delete the subform label by clicking it and pressing the Delete key. On the

Format tab of the Property Sheet, change Border Style to Transparent.

6. To test the report, run mcrTempDate for the period between 3/1/2010 and

3/31/2010. Then run mcrInventory01- and mcrCoGS01- before opening the report

in Report view. Close the report.

Fig. 12.54
Completed
rptIncomeStatement in
Design view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 627

Creating a Balance Sheet Report

The balance sheet report that we will create for Pipefitters Supply Company will have three
subreports: assets, liabilities, and equity. We will use the financial statement queries from
Chapters 8 through 11. We will also use queries from this chapter for cash, ending inven-
tory, prepaid expenses, and fixed assets. Before we build the subreports, we will start by
creating separate queries for assets, liabilities, and equity. We included queries from prior
end-of-chapter problems that are required for the balance sheet in the Chapter 12 database.

EXERCISE 12.21: CREATING QUERIES FOR THE ASSETS
BALANCE SHEET SUBREPORT

1. To make the asset subreport easier to build, we will create a new query to sum all of

the prepaid expenses. Create a new query in Design view. Add qryPrepaidExpenses02-

PrepaidExpenseBalances to the Table Pane. Add SumOfPrepaidExpense to the QBE

grid. Click Totals in the Show/Hide group. Change the Total cell to Sum. Open the

Property Sheet and type Prepaid Expenses as the Caption. Save your query as

qryPrepaidExpenses04-PrepaidExpenseBalance. We use Balance instead of Balances to

indicate that this query produces the balance sheet line item Prepaid Expenses.

Fig. 12.55
Completed
rptIncomeStatement in
Report view for the
period between
3/1/2010 and
3/31/2010.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

628 Chapter 12: A Complete Accounting System for a Merchandising Company

2. Change the date criteria in the following queries used to compute accounts

receivable, in Chapter 8, to <=[TempVars]![EndDate].

• qryAccRec1-SumOfSales (Chapter 8): Change the Criteria for ShippingDate.

• qryAccRec2-SumOfCR (Chapter 8): Change the Criteria for CashReceiptDate.

3. Create a new query in Design view for the asset subreport. Add the following

queries to the Table Pane: qryCash3-CashBalance, qryAccRec3-AccountsReceivable,

qryInventory14-EndingInventory, qryPrepaidExpenses04-PrepaidExpenseBalance,

and qryPrepaidExpenses03-FixedAssets. Add the following fields to the QBE grid:

• CashBalance from qryCash3-.

• AccountsReceivable from qryAccRec3-.

• SumOfInvOnHandLineExtension from qryInventory14-.

• SumOfSumOfPrepaidExpense from qryPrepaidExpenses04-.

• SumOfPurchaseLineExtension, SumOfAccumAmortAndDepr, and

SumOfPrepaidExpense from qryPrepaidExpenses03-.

Save the query as qryBalanceSheet01-Assets.

4. Use Expression Builder to compute total assets in the next column of the QBE grid:

TotalAssets: [CashBalance]+[AccountsReceivable]+[SumOfInvOnHandLineExtension]

+[SumOfSumOfPrepaidExpense]+[SumOfPrepaidExpense]. Open the Property

Sheet and set the Caption property to Total Assets. Figure 12.56 shows the dynaset

as of 3/31/2010. Notice that balance sheet items are for a specific point in time rather

than for a period of time.

EXERCISE 12.22: CREATING QUERIES FOR THE LIABILITIES
BALANCE SHEET SUBREPORT

1. Change the date criteria in the following queries, used in Chapters 9 through 11, to

<=[TempVars]![EndDate]:

• qryAccPay1-SumOfPurchases (Chapter 9): Change the Criteria for

InventoryReceiptDate.

• qryAccPay2-SumOfCD (Chapter 9): Change the Criteria for CashDisbursementDate.

• qryWagesPayable1-GrossPay (Chapter 10): Change the Criteria for

LAPayPeriodEnded.

• qryWagesPayable5-SumOfCDPayroll (Chapter 10): Change the Criteria for

CashDisbursementDate.

• qryDividendsPayable1-DividendsDeclared (Chapter 11 Practice Exercise 3):

Change the Criteria for DividendDeclarationDate.

• qryDividendsPayable3-SumOfDividendsPaid (Chapter 11 Practice Exercise 3):

Change the Criteria for CashDisbursementDate.

• qryLoansPayable1-SumOfCDPrincipal (Chapter 11 Practice Exercise 1):

Change the Criteria for CashDisbursementDate.

• qryLoansPayable2-SumOfCR (Chapter 11 Practice Exercise 1): Change the

Criteria for CashReceiptDate.

2. Create a new query in Design view for the liabilities subreport. Add the following

queries to the Table Pane: qryAccPay3-AccountsPayable, qryWagesPayable6-

WagesPayable, qryPayrollTaxesPayable, qryDividendsPayable4-DividendsPayable,

and qryLoansPayable3-LoansPayable. Add the following fields to the QBE grid:

• AccountsPayable from qryAccPay3-.

• WagesPayable from qryWagesPayable6-.

Fig. 12.56 Dynaset
for qryBalanceSheet01-
Assets as of 3/31/2010.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

Chapter 12: A Complete Accounting System for a Merchandising Company 629

• PayrollTaxesPayable from qryPayrollTaxesPayable.

• DividendsPayable from qryDividendsPayable4-.

• LoansPayable from qryLoansPayable3-.

Save the query as qryBalanceSheet02-Liabilities.

3. Use Expression Builder to compute total assets in the next column of the QBE

grid: TotalLiabilities: [AccountsPayable]+[WagesPayable]+[PayrollTaxesPayable]

+[DividendsPayable]+[LoansPayable]. Open the Property Sheet and set the

Caption property to Total Liabilities. Save your changes. Figure 12.57 shows the

dynaset as of 3/31/2010.

EXERCISE 12.23: CREATING QUERIES FOR THE EQUITY
BALANCE SHEET SUBREPORT

1. Create a new query to compute the common stock issued by summing cash

receipts related to stock issues. Create a new query in Design view. Use Figure

12.58 as a guide. Add tblCashReceipt to the Table Pane. Add CashReceiptAmount,

CRTypeID, and CashReceiptDate to the QBE grid.

2. Click Totals in the Show/Hide group. Change the Total cell for CashReceiptAmount to

Sum, and change the Total cell for the other two fields to Where. Open the Property

Sheet and type Dividends Payable as the Caption for CashReceiptAmount. Set the

Criteria for CRTypeID to “03” in order to select cash receipts from stock issues. Set

the Criteria for CashReceiptDate to <=[TempVars]![EndDate]. Save your query as

qryCommonStock. Your total for common stock on 3/31/2010 should be $240,000.00.

3. Create a new query in Design view for the equity subreport. Add the following

queries to the Table Pane: qryBalanceSheet01-Assets, qryBalanceSheet02-

Liabilities, and qryCommonStock. Add the following fields to the QBE grid:

• TotalAssets from qryBalanceSheet01-.

• TotalLiabilities from qryBalanceSheet02-.

• SumOfCashReceiptAmount from qryCommonStock.

Save the query as qryBalanceSheet03-Equity.

4. Use Expression Builder to compute retained earnings in the next column of the QBE

grid: RetainedEarnings: [TotalAssets]-[TotalLiabilities]-[SumOfCashReceiptAmount].

Open the Property Sheet and set the Caption property to Retained Earnings. Save

your changes. You can verify the retained earnings balance of ($42,032.72) in Figure

12.59, as of 3/31/2010, by subtracting total dividends paid through 3/31/2010 from net

income for the period between 1/1/2010 and 3/31/2010. Before running

rptIncomeStatement, you first need to run mcrTempDate (1/1/2010 and 3/31/2010 as

begin date and end date respectively), mcrInventory01- and mcrCoGS01-,

respectively. Run rptIncomeStatement to obtain the net loss of ($20,032.72), and run

PE5-3qryDividends-DividendsPaid to obtain dividends paid of $22,000.00.

5. Use Expression Builder to compute total equity in the next column of the QBE

grid: TotalEquity: [SumOfCashReceiptAmount]+[RetainedEarnings]. Open the

Property Sheet and set the Caption property to Total Equity. Save your changes.

6. Use Expression Builder again to compute total liabilities and equity in the next

column of the QBE grid: TotalLiabilitiesAndEquity: [TotalLiabilities]+[TotalEquity].

Open the Property Sheet and set the Caption property to Total Liabilities and

Equity. Save your changes. Figure 12.59 shows the dynaset as of 3/31/2010.

Fig. 12.57 Dynaset
for qryBalanceSheet02-
Liabilities as of 3/31/2010.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

630 Chapter 12: A Complete Accounting System for a Merchandising Company

EXERCISE 12.24: CREATING THE BALANCE SHEET
SUBREPORTS

Create a subreport for the asset section of the balance sheet.

1. Click qryBalanceSheet01-Assets and start Report Wizard. Click >> to select all

available fields.

2. Click Next three times and click Columnar for the Layout option. Click Next twice to take

you to the last dialog box. Name your report rsubBalanceSheet-Assets. Click Finish.

3. Switch to Design view. Use Figure 12.60 and Exercise 12.19 to help you transform

the report into the finished product.

• The Font for Assets is 14 and Underlined.

• Set the Format of Accumulated Depreciation to Currency.

• Set the Scroll Bars property for Report to Neither.

Repeat steps 1 through 3 to create a subreport for the liabilities section of the balance

sheet.

4. Use qryBalanceSheet02-Liabilities as the query for the subreport. Name the

subreport rsubBalanceSheet-Liabilities. Figure 12.61 shows the completed

subreport in Design view and Report view.

Repeat steps 1 through 3 to create a subreport for the equity section of the balance

sheet.

5. Use qryBalanceSheet03-Equity as the query for the subreport. Name the subreport

rsubBalanceSheet-Equity. Figure 12.62 shows the completed subreport in Design

view and Report view.

Fig. 12.58
qryCommonStock in
Design view.

Fig. 12.59 Dynaset
for qryBalanceSheet03-
Equity as of 3/31/2010.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 631

Fig. 12.60
Completed
rsubBalanceSheet-
Assets in Design view
and Report view on
3/31/2010.

Fig. 12.61
Completed
rsubBalanceSheet-
Liabilities in Design
view and Report view
on 3/31/2010.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

632 Chapter 12: A Complete Accounting System for a Merchandising Company

EXERCISE 12.25: CREATING THE BALANCE SHEET REPORT

1. Click Blank Report in the Reports group on the Create tab. Switch to Design view.

Click Title in the Controls group to cause the Report Header to appear. Click the

title and press the Delete key to delete it. Use the vertical scroll bar to move to

the bottom of the report. Click and drag the bottom of the Report Footer area up

to eliminate the Report Footer. Click and drag the top of the Report Footer bar up

to eliminate the Page Footer. Save the report as rptBalanceSheet. Use Figures

12.63 and 12.64 as guides for the rest of this exercise.

2. Open rptIncomeStatement in Design view. Select all of the objects in the Report

Header. Press Ctrl+C to copy them to the clipboard. Close rptIncomeStatement.

Click anywhere in the Report Header of the blank rptBalanceSheet and press

Ctrl+V to paste the income statement header. Change the second line of the

header to Balance Sheet. On the third line, delete all objects except the last one

on the right, =[TempVars]![EndDate], and center it.

3. Click and drag rptBalanceSheet-Assets from the Navigation Pane into the Detail

section of the report. Delete the subreport label. Open the Property Sheet and

change the Border Style to transparent.

4. Repeat Step 4 with rptBalanceSheet-Liabilities and again with rptBalanceSheet-Equity.

5. Save your changes to rptBalanceSheet.

6. Create a macro to automate the steps to generate an income statement and balance

sheet. Use Figure 12.65 as a guide. Open a new macro in Design view. Add three

Fig. 12.62
Completed
rsubBalanceSheet-
Equity in Design view
and Report view on
3/31/2010.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m

M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 633

RunMacro Actions for mcrTempDate, mcrInventory01-EndingInventory, and mcrCoGS01-

CoGS. Add OpenReport Actions for rptBalanceSheet and rptIncomeStatement. Save your

new macro as mcrFinancialStatements. Close the macro.

7. Run the macro by double-clicking it. Enter OpenReport for the beginning date and

OpenReport for the ending date. We purposely left the income statement and

balance sheet reports open so that the user can examine them right after the

macro executes all of its actions.

Fig. 12.63
Completed
rptBalanceSheet in
Design view.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

634 Chapter 12: A Complete Accounting System for a Merchandising Company

You have just completed the last and, perhaps, the most important step in building an
accounting information system—getting useful information out of the system.
Congratulations!

Fig. 12.64
Completed rptBalance-
Sheet in Report view on
3/31/2010.

Fig. 12.65
mcrFinancialStatements
in Design view.

Microsoft product screen shot reprinted with permission from Microsoft Corporation.

M
ic
ro
so
ft
pr
od
uc
t
sc
re
en

sh
ot

re
pr
in
te
d
w
ith

pe
rm
is
si
on

fro
m
M
ic
ro
so
ft
Co
rp
or
at
io
n.

Chapter 12: A Complete Accounting System for a Merchandising Company 635

Summary
This chapter described how to complete Pipefitters Supply Company’s accounting information system. The only
change in the Pipefitters’ database design is the addition of tables to allow Pipefitters to store data related to
support activities.

However, the main focus of this chapter was on getting financial accounting information out of the system.
After all, if an accounting information system does a poor job of providing useful information, it does not matter
how effective it is at storing the data. Gathering data from multiple business processes is no different than aggre-
gating data from within a single business process as long as all of the business processes are fully integrated. This
made deriving the cash balance easy because all cash receipts are stored in one table, as are all cash disburse-
ments. Additionally, we used type tables (tblCRType and tblCDType) to easily identify cash receipts and disburse-
ments by the type of event to which they are related.

On the other hand, computing the ending inventory balance and cost of goods sold proved to be quite a chal-
lenge. Though, with the help of action queries (make-table and update queries) and programming with macros,
we showed you how a database can accomplish complex tasks. One other challenge was to amortize/depreciate
prepaid expenses and fixed assets. We showed you how to use date functions to solve these problems.

Hopefully, you saw the payoff for all of your hard work when you ran mcrFinancialStatements for the first
time and saw a balance sheet and income statement simply appear on your screen. Incorporating subreports
into these financial statements allowed us to create reports with information that is not linked. Additionally,
using temporary variables with input boxes in mcrTempDate allows users to enter reporting dates just one time,
rather than forcing users to enter the dates for each set of financial-statement queries.

Questions and Problems for Review
Multiple-Choice Questions

1. Support activities include all of the following except
a. purchasing office supplies.
b. depreciating equipment.
c. paying employees.
d. computing the prepaid expense balances.

2. Which inventory cost flow assumption provides the same results for ending inventory and cost of goods
sold (CoGS) for both perpetual and periodic inventory methods?
a. First-in-first-out (FIFO)
b. Last-in-first-out (LIFO)
c. Weighted average
d. All methods produce the same results for both perpetual and periodic inventory methods.

3. Which inventory cost flow assumption requires the cost of items on hand to change?
a. FIFO
b. LIFO
c. Weighted average
d. Specific identification

4. The FIFO inventory method assigns quantity on hand to the
a. items purchased most recently.
b. oldest items purchased.
c. specific inventory items identified in tblOutflow-SaleInventory.
d. None of the above are true.

5. What tables are used to identify inventory items purchased by date?
a. tblPurchase and tblSale
b. tblInflow-PurchaseInventory and tblOutflow-SaleInventory
c. tblPurchase and tblInflow-PurchaseInventory
d. tblPurchase and tblOutflow-SaleInventory

636 Chapter 12: A Complete Accounting System for a Merchandising Company

6. Which of the following is NOT true about the temporary variables created by mcrTempDate?
a. They can be used by any table, query, form, or report in the database.
b. They have their values set by the user.
c. They can be used to replace parameter queries.
d. All of the above are true.

7. Why does the query to add the sum of items immediately expensed by non-inventory type to the sum of
amortization/depreciation expense by non-inventory type use outer joins?
a. All items immediately expensed should be reported even if there is not a related amortization/deprecia-

tion expense.
b. All amortization/depreciation expenses should be reported even if there is not a related item immedi-

ately expensed.
c. Both a and b are true.
d. Neither a nor b is true.

8. Which of the following is true about subreports?
a. Subreports do not need to have any fields linked to another subreport or to the main report.
b. At least one subreport must have fields linked to one or more fields in the main report.
c. Subreports must be linked to one or more fields either in the main report or in another subreport.
d. Subreports must be linked to one or more fields in the main report.

9. How can the retained earnings balance be verified for accuracy?
a. Compare it to net income generated by qryIncomeStatement when run from the beginning of the com-

pany’s existence through the balance sheet date.
b. Compare it to net income generated by qryIncomeStatement when run for the current period, and sub-

tracting dividends during the current period.
c. Compare it to net income generated by qryIncomeStatement when run from the beginning of the com-

pany’s existence through the balance sheet date, and subtracting all dividends paid through the balance
sheet date.

d. There is no way to verify the accuracy of retained earnings without using debits and credits.
10. How would you represent unearned revenue in a database AIS?

a. A record in tblSale without a related record in tblCashReceipt
b. A record in tblSaleOrder without a related record in tblSale
c. A record in tblSale with a related record in tblCashReceipt
d. A record in tblSaleOrder with a related record in tblCashReceipt

Discussion Questions

1. The macros to compute ending inventory and CoGS have OpenQuery Actions for only some of the queries
needed to compute ending inventory and CoGS. Why?

2. Describe how you would change the ending inventory and CoGS queries to compute these balances based
on the LIFO inventory cost flow assumption.

3. In this chapter, we showed you how to create a balance sheet and an income statement. What changes to
the database would you make to produce a statement of cash flows?

4. How would you change the database and balance sheet queries to classify assets and liabilities into current
and long-term?

5. What information do you feel is missing for non-inventory purchases? Why is it important?

Practice Exercises

Note: Before attempting any of the following Practice Exercises, save a new copy of Ch12.accdb from the Com-
panion Web site to use for the Practice Exercises. Then, clear the copied database’s Read-only file attribute. Begin

Chapter 12: A Complete Accounting System for a Merchandising Company 637

the names of all Access objects you create in the Practice Exercises with PE#-. Replace # with the Practice Exer-
cise number.

1. Create a form to record non-inventory purchases. It will be similar to the inventory purchase form. You
need to add PurchaseTypeID to your query and add it to the form. Since all values for PurchaseTypeID
will be “02,” set the default value to “02” and set the Visible property in the Format tab of the Property
Sheet to No. Use the prefix PE1- for all Access objects you create for this form.

2. Computing weighted average ending inventory and cost of goods sold (CoGS) requires that you divide the
total quantity available for sale by item by the sum of the line extensions by item. Create a set of queries to
compute ending inventory and CoGS using weighted average. Assume that goods available for sale are all
items purchased through the reporting date. Use the prefix PE2- for all Access objects you create for these
computations.

3. Change the ending inventory and CoGS Access objects in this chapter to compute ending inventory and
CoGS under the LIFO cost flow assumption. Use the prefix PE3- for all Access objects you create for these
computations.

4. A company’s operating cycle is the time it takes a business to convert inventory into accounts receivable,
plus the average time it takes to convert accounts receivable into cash. The first component of this formula
is to compute the average number of days to sell inventory. Since we do not identify which specific items
are sold (we do not track inventory by serial number), we can approximate the average time to sell inven-
tory: 365 ÷ inventory turnover. Inventory turnover = CoGS ÷ average inventory. Use the ending inventory
instead of average inventory ([beginning inventory + ending inventory] / 2). Use the prefix PE4- for all
Access objects you create for these computations.

5. The second component that the operating cycle formula is to compute is the average number of days to
collect accounts receivable. One way to do this is to compute the average number of days to collect ac-
counts receivable: 365 ÷ accounts receivable turnover, where accounts receivable turnover = sales ÷ aver-
age accounts receivable. Create queries to compute this for any period. Use ending accounts receivable
instead of average accounts receivable. Use the prefix PE5- for all Access objects you create for these
computations.

6. Based on your solutions to Practice Exercises 4 and 5, compute the Operating Cycle. Use the prefix PE6-
for all Access objects that you create for these computations.

638 Chapter 12: A Complete Accounting System for a Merchandising Company

