
·fi~he term projection is com monly used to 
designate the phenomena of image production of 
an object onto a surface or plane. This involves the 
application of a set of principles. procedures and 
purposes. (Broadly speaking. map projection is 
defined as the systematic drawing of a network of 
parallels and meridians on a plain• sheet of paper 
portraying a part or whole of the earth 's surt·ace. 
Naturally. it is scale-dependent and is done in 
accordance with a set of geometric and 
mathematical principles to satisfy certain 
objectives of the user. ) 

Map projection is a device by which the 
curved surface of the earth is represented on a flat 
plane(.The operational process essentially involves 
dimensional transformation, i.e. , a 2-dimensional 
representation of the 3-dimensional figure of the 
earth. Thi s produces deformations which are 
inevitable because the surface of the generating · 
globe and the surface or plane of projection are 
not geometrically applicable.) 

Mathematicall y, the general equations 
describing such transformation in map projection 
are: 

u = f1 (A. </>) ... (i) 
V = f2 (A. </>) ... (ii) 

where, A, </) define the coordi nates of positions on 
the original 3-dimensional surface, u. v describe 
the corresponding coordinates on the transformed 

· 2-dimensional plane and f1 and f2 are real. single
valued, continuous and differentiable functions of 
'),_ and </) in certain domains so that the JacobiHn 
determinant does not van ish: 

. J = 

au au 
cJ}1, ' o~ 
av av 
a,._ ·a~ 

=t 0 

Map Projectio • 

On the transformed plane, the rectang ~ ": 
coordinates (x, y) and polar coordinates (p, Aj . ·' 
the same point with geographical coordiria ~: ·.' 
(A, <j>) or spherical coordinates (0, r) are given 1 

·' . J 

x=f1 (A,$) p=f1 (0,r) 
y=f2 (A-,$) or A=f2 (0,r) :. 1 

Therefore, x and y or p and A are .speci.~ . ; 
functions· of latitude and longitude and one sin~ -: 
point (A,$) or (0, r) on the earth is represented:~ C 

5 

one and the only point (x, y) or (p, A) on the map. : I 
Thus, map projection is reversible and unique( 1 

. ., /, 

Scale Factor . . 1 

Map projection is a 2-step process in which tll: · 
earth is first reduced to a gen.crating g.lobe oft' 
desired size and th.en the generating globe.ii , 
projected onto a plane. The transformation oh · · 
globe to a plane is identical to the problem of: ' 
trying to make the skin of an orange ex-ac!,lfi , 
coplaner and coincident with a table top witholif 
contortions, stretching and even tearing. Hen.c.e 
deformation and distortions are inevi.table in n:iap · 
proj;ction. . · · t 

l The _scale i_n whi~h the genera_ting ~lobe,(a, 
3-d1mens1onal figure) 1s conceptualised 1s calle& 
the Jirindpal sca!e)On maps it is correcJl{ " 
maintained only at selected points or lines (i.e:; · 
the point of tangency or the lin~s of contact of ihe ai 
projection plane or developable sutfoce with tb{ .· 
generating globe). Elsewhere on the map wher-.e:' · 
distortions occur, the priAC'ipal scul~ ,be:co11te~_: f R, 

significantly different from that in which the niap:. ' 
is act~ally generated./The soale of the resuJt~n. ~:.; · 
map 1s termed as (he recd .rnc,le.. J,t is 1he: ., ; 
differential st1:etching and· contort,i:~ms of lfif \ · 
generating globe tha! make the re-~·· sea.· le uneq~t: · 
at each and every pomt on the m~p. · enee. on tb. ·' '.· 

,· . 
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11 ,1111~ 1::- ,, .., . . I -1 . 
l h, onnc1pnl sea e ntH.1 the reul scule at lx'l\\'e-t'.ll l l: r- , , · • t on the map 1s called the scale .factor nt nnY polll . • · · . 1 Muthemat1cally speakmg, that pt,111 • 

s ··ik F:tl·tor. 
'-• _ Denominator of the Principal Scale ) 

SF == o~nominator of the Real Scale 

Radi2ll Scale Factor an~ Tangenti~l Sca!e Factor 
T . . ·ot', , t 850) law c~f deformaflon states that ,~:- ' ' 
.... at each point of the spherical surface th~re 

.
1
·srs at least two perpendicular directions which ex -

reappear at right angles to each other on the 
projection. although all. oth~r _angle~ at ~h_at point 
may be altered from their ongmal d1spos1t1on.' 01} . 
a ~ap these two directions are as follows-one 
alon2 a parallel and the other along a meridian. The 
seal; factor measured along a parallel is called the 
parallel scale factor_ or tangential scale factor 
while that measured along a meridian is called the 
meridional scale factor or radial scale factor. 
The equations for derivation are: 

Ta11ge111ial Scale Factor (TSF) 

Denominator of the Principal Scale 
along a parallel (<I>) =-'-------------~---L-

( 
Denominator of the Real Scale l 

along the same parallel (<I>) J 
Length of a parallel on globe (L0g) =--------------'----Length of the same parallel on map (L6m) 

Hence, along a parallel q>, tangential scale factor, 

Lenoth of u meridian on globe (L ;.~ ) _ ::, 

= Length of the same meridian on map (L ,.,n ) 
Hence along u meridian A, radial scale factor. 

L
RSF = '·~ 

L Anl 
and radial scale is expressed by 

l : RSF 

Deformation 

... (iii) 

... (iv) 

Along the two principal directions, it is the balance 
of the scale factors that determines the nature and 
magnitude -of deformations _on a projection.{!here 
are four principal types of deformations.. These are 
deformations in area, shape, distance and 
direction, which are mutually exclusive in nature) 
On a projection transformation, scale factors are 
simple vectors, their products and resultants 
determine the specific property of a projection. 
On the basis of this, projections are classified into 
five types: · 
1. · Equal-Area Projections 

In these; the area of a segment on the 
generating globe is truly preserved on the 
corresponding segment ·of the graticules. At 
any point of such projections, the product of 
the two scale. factors · is unity, or. in other 
words, 

RSF x TSF = l 
These are also called authal ic, 

homolographic or equivalent projections. 
2. Orihomorphic Projections 

LA .. 
TSF = v,, ... (i) 

Here, the shape of a segment on the 
generating globe is truly preserved on the 
corresponding se~ment of the graticules. At 
any point of such projections, the two scale 
factors are exactly equal in magnitude. The 
necessary condition of orthomorphism is , 
therefore, the equality of scales along the two 
principal directions. i.e., 

Lom 

and tangential scale is expressed by 
1: TSF 

Radial Scale Factor (RSF) 

... (ii) 

Denominator of the Principal Scale 
along a meridian (A) ::: -----:----=-----------:--'-

( 
Denominator of the Real Scale J 

along the same meridian (A) V 

RSF = TSF 
These are also known as trne-shape or 

co,~f<Jrmal projections. 
3. E()Uidistant Projections . 

In these, the distance between any two points 
on the generating globe is truly preserved 
between the corresponding points on the 
graticules. ... 
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4.. Azimuthal Projections are genetically neither azimuth "~ 
Here the azimuth defining the directions 
between any two points on the generating 
globe 1s truly preserved between the 
corresponding two points on the graticules. 

equidistant,. nor equivalent and nor con~~ 

Classification of Map Projection . t 
Map projections are fundamentalJy clas . 
based on the extrinsic and intrinsic propeni .

81
n. ~ 5. Aphylactic Projections 

ln these, neither of the above four properties 
is truly and fully preserved. Such projections 

. . . . I es,.1 extnns1c properties me ude the ex ·. 1 

o~~, parameters of transformation, i.e., the nar 
0 

1 
life, k 

'" 
~ Table 2.1 Classification of Map Projections 

- C-ri-te-r-ia-.----P-a_ra_m_e_te-r--.---- -------C::::-la-ss-e-s/-;;S;---u-;--b--c-:-la-s-se_s ___ --..., : 

A Datum Surface 

1. EXTRINSIC B. Plane or Surface 
of Projection 

C. Method of 
Projection 

B. Appearance of 
2. rNTRINSIC Parallels and 

Meridians 

C. Geometric 
shape 

I. Direct or Spheroidal Projection 
II. Double or Spherical Projection 

m. Triple Projection 
1st Order (plane) 2nd Order (aspect) 3rd Order (c~ ; 

i. Normal' I. Planar a. Tangent 
11. Conical 
ill. Cylindrical 

b. Secant ii. Transve~ · 
c. Polysuperficial iii. Obliqu~ _ 

' ,, I. Perspective _-------- a. Gnomonic . , 
II. Semiperspective ~ b. Stereograp~ic • . 

m. Non-perspective ~ c. Orthographic._:,. 
IY. Conventional 

I. Azimuthal 
II. Equidistant 

m. Equivalent or Authalic or Homolographic 
IV. Orthomorphic or Conformal 
V. Aphylactic 

I. Both parallels and meridians are straight lines 
II. Parallels are straight lines and meridians are regular 

curves 

. r 

I• 
,I '/ 

i 

! ' 

lfl. Parallels are regular curves and meridians are straight : ; 
l
. I mes 

1
~ 

rv. Both parallels and me~idi~s are regular_ c~rves j • 

V. Parallels are concentric circles and mendian& are 1 
regular curves. I:: 

VJ. Parallels are concentric circles and meridians are 
radiating straight lines -1· 

VII. Parallels are irregular curves and meridians are . 
radiating straigh~ lines , 

VIII. Both parallels and meridians are irregular curves · ---~ 
I. Rectangular f 

Il. Circular · 
III. Elliptical t 
IY. Parabolic '! 
V. Butterfly · f 

VI. Others I 
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0 l ,,oos It is mensur~d either l . • 90 N anc " · · · the po es a1e 3 , ·h of the eql.lutor und is 
to the ~1orth or t~ y,e s~l~N or os. Through each 
·1ccordn1gly spec,tted n.. . d cent1·ed ~ -- tl , quatot an latitude. circles parallel tu 1~ e . - I These are 
on the polar axis muy be unag~nec. . liefs 
ca\\ed 1)(lra/lels ,f lati111des or sunply 1~a,a. , I . 

) ll ls ·tt 10 mte1vas. "lt•)o-ether there are l 8l para e , ' . I ·'"' '- ;:- . · , , reat ctrc e. Of the µaral\els only the equat01 ts (1 g 
The radius and the length of the parallels gradual_!~ 

• t tl "qu ·1tor to t•ts decrease from its maxima a 1e ~ ' 
minima at the poles. 

1 
. 

The semicircular lines joining the two po es 
• · tl ·· llels at 1·i 0 ht anules are al·1d mtersectm 0 1e parn e o 

e · . · d All called meridians or Imes of longttu es. 
meridians are equal in size. There are 360 . 
meridians at 1 o intervals. Of these, the one that 
passes through Greenwich is t~ken a~ _the 
reference line and is called the prune meridian. 
The longitude of a place is described as the angle 
subtend;d by the meridional plane passing through 
a place on the plane of the prime meridian,_ i.e., 0° 
at the centre of the earth. It is measured either to 
the east or to the w~st of the prime meridian and 
is accordingly specified as 0 E and 0 W. 

Graticule 
(rt refers to the net or m~s~ of mutually 

intersecting parallels and mend1ans drawn to a 
certain scale and based on certain principles. The 
term graticu.lation is used to specify the 
procedures by which the network of graticules are 
drawn. ) · 

Generating Globe 
l.It refers to the globe from which pr?j~ctions are 

generated or developed. Normally 1t 1s a small 
skeleton globe made of glass or wire (Fig. 2.2). 
The parallels and meridians are shown by black 
lines (glass globe) or wires (wire globe) placed at 
their true angular di stances apart. Naturally the 
generating globe is a geometrically accurate earth 
reduced in size.) 

t 
Projection Plane 

int of T 

s 

F. 2 2 Proiection Plane and Generating Globe : 1g. . J 

I 

projection P.lane touches the generating globe ~~ 
single point" (Fig. 2.2). , 

Developable Surface 
( In case of planar proje~tions, only a single point_ 

truly represent~d wtth the exact one-to-oJ 
corresponp.ence)Obviously, fro~ this poi~t ! 
tangency, {tbe distortion on a map mcreases m 
directions. To minimise i~, the ~oi~t of COnlj 
with the o-enerating globe 1s max1m1sed by US1\ 

· projectio; surface; that can ea~ily be develo~i
into 2-dimensional geometnc planes. Su 

~ I proje. ction surfaces are_ kn?wn as l~evel~pa~) 
surfaces, e.g., a cone or a cyhnderl nght ctrc~j 
cone or a cylinder usually touches a generaun1 globe along a parallel and may even intersect \ 
along two different parallels in certain desil\\ 
si tuations (Fig. 2.3). Along these parallels. ·one-ttr 
one correspondence is truly maintained invotvini, 
no error and are termed as lines of -;,ero distortic//1. 

r ,,: When developed, a cone becomes a secto -
circle and a cylinder becori1es a recra11,~/i1 
both being parts of a 2-dimensional pt:.in~ 

· t· •01¥ Notably, when the angle at the vertex o a i; ~ 
becomes 180° , the cone is developed into ,

11
1 

projection plane touching the generating globe ', Projection Plane 
{_ It is a 2-dimensional geometric plane upon which 

the parallels and meridians are usually projected.) 
In case of a perspective planar projection, the 

..., ~ f 'l coll• I a single point only. Again. when the apex O ,' 
0 

ii 

lies at infinity, the cone is developed 1:r 
111

,. f 
cylinder touching the generating globe alon.:- I 
equator. 

t 
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------------------ -----V 
(b) 

V 

A B 

(c) Cone as developed 

A N B 

a· p · 

Cylinder as developed } . er: w § C\J 

V 0 

I 

, ·. 

D s C -----------C ...,_----.....----21tR----------...... 

Fig. 2.3 Developable Surfaces: Cone and Cylinder 

Central Meridian 
(for a given longitudinal extension, it refers to that 

meridian, which lies exactly at the median or 
middle-most position of that extension. It has only 
constructional im~rtance and is normally drawn 
as a straight line)rhe mesh of graticules on one 
side of the central meridian (CM) is in fact the 
mirror image of the other side. 

Standard Parallel 
l The parallel(s), along which a projection plane or 

a de velopable surface touch(es) or intersect(s) 
the generating globe, are ca]]ed standard 
parallel(s) . Along the standard parallels, the 
tangential scale is ess~ntially_ I: 1 .. He~ce, these 
are always the lines of zero dtstortwn.J 

Constant of a Cone 
0t is defined as the ratio between the> angle at the 

vertex or apex of a cone when developed (a) and 
the angle at the pole of the g_enerating globe 
(360°))Fig. 2.4). 

( Therefore, the constant of a cone, n = ~ \ 
. . 360°) 

Smee_ a depends on the standard parallel ( <I> ) 
n is a direct function of <l>o . The two ex.tre~~ 
situations are: 
i. whe~ <\>0 =. 0°, a cone is transfonned into a 

special cylmder with a= 0°. · 
oo 

Therefore, n = -
360° 

=O 
. . h ,h - 900 . . . . . ( i) 
11. w en 'l'O - , a cone is transformed into a 

plane and a becomes 360°. 
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F' ? 4 Constant of a Cone 1g. -· 

Therefore, n 
360° 
360° 

= 1 '." (ii) 
Hence, 0 ~ n ~ 1 is the boundary condition of 
the constant of a cone. 
From Fig. 2.4, 

a. r - l • lilo - lilo 

1 00 or, a= -
re?o 

Therefore, n 
a 

360°.r<i>o 

= 27t.R.cosq>0 [:. l<i>o = 21t.R.cosq>0 ] _. 

360°.R.cotq>0 r<i>o = R.cotq>0 

= sin q>0 • 

Thus, in the simplest case of a conical 
projection with one standard parallel, the constant 
of a cone is equal to the sine value of the standard 
paralJel. 

Cases of Projection 
This is defined as the geometric relation expressed 
as the angle between the . axis of symmetry of the 

plane of projecfron and the polar ax.is of the globe, 
(~). There can be three cases of projection
norma/, transverse and oblique. In the normal 
case, ~ = 0°, in the transverse case P -= 90° and in 
the oblique case 90° > P > 0°. 

Aspects of Projection 
This refers to the attitude of the plane or the 
surface of projection. The plane of projection may 
be tangent at one pbint only or intersect along a 
parallel circle. A polyhedric surface, (i.e., one 

, which has more than one plane) may be tangent at 
a number of points. Similarly, a cone or a cylil)der 
may be tangent along a parallel or may interest 
along two parallels. A polyconic or polycylindrical 
surface may even be chosen for a projection. 
The main objective is to maximise the points of 
contact in order to minimise the cumulative 
deformation. 

/erspective Projections 
(Jn these, graticules are drawn from a transparent 

generating globe made of glass with the help of a 
light source. Rays emerging from the sources cast 
shadows of parallels and meridians on the 
projection plane, e.g., Gnomonic projection, 
Stereographic pro jectio11., Orthographic 

· projection and the Sim le Conic projection w · 
standard parallel. 



27 ,

1

(1 1)11 ________________________________ _::.:... 

~ 
, , •thrc Pvojecthms 

L.',,mH,,•rtoitJCl: , ~l' I of illl l' r~cc tin11 lin•'" ·, ., .. , ' ,,n1. ", e ... . , ., 

' " il1t''\ ' 11 1,r01·cct~d und the other set dl'nw n 

■ An Infi nite mnnbcr of great circles can be 
drnw n on a sphere . 

' ' l\ \ . 
~l'1,1n1•tf

1
~ •

1 1 d1.·~d,~d propcrt y. 
I l ' , 111 • )'Ill'') l • 

, ·tl,·l' Projections 

■ The !-.hortcr urc: of the great d rcle through two 
point s is the shortest di stance between the 
points on the spherical surface . 

,w,...,Po . 
'\ tH' · w,Jj~( thrn is dnnc II\ ucconlancc lo a 
l ' l ht'\l\ I . . I ' . I 

, 1 
· , m.,thcmaucu pnnc1p e to sat is fy , ,n , ,~ll nl ) \ \ , ~,.,, 

·1 ot,1c•,'\I l: .• 
.. 'l't,.11 I • 

•
1
•00,,1 p.-01· rctions Con\'l'lh • , . . . 

. . ,,\: non-pcrspcctt vc prn,1ccttons constructed Th1>t , . . 
. 

11 
•
0,, ., ~ct nt conventions purely based on fl, \"u ~ , . 

h ,111,,1ii.": ·d operations postulated by a mat 1. ,, • 

,.:artographcr to portray the whole globe with 
cemin objecti ve-s. 

The Great Circle 
If a plane intersects a sphere, the resulting section 
of the curved surface which is traced on the plane, 
is :1 ciide. If the intersecting plane passes ,- through 
the center of a sphere, the resulting section is a 
cirde, whose radius is the largest which can occur 
and is equal to the radius of the sphere itself. 'This 
is defined as a great circle. Thus a meridian is· a part 
of a great circle. The equator is the only parallel 
which is a great circle and all other parallels are 
small circles. If the plane does not pass through the 
centre of the sphere, the radius of the resulting 
circle is less than that of the sphere. This is called 
a small circle. The special features of great circle 
are: 
I The axis of two or more great circles cannot 

coincide. 
I 

I 

I 

Intersecting great circles bisect each other. 
The plane of a great circle divides a sphere into 
two equal halves. 
The section of all great circles passes through 
the centre of the sphere~ therefore the centre 
of the sphere is the common centre of all the 
·great circles. 

The Geodesic 
Similar to the great circle arc , the shortest possible 
connection between two points on the ellipsoi~al 
surface is defined as the geodetic lin e or, for 
convenience, the geodesic. Progressing along this 
curved . line . from point to point. the tange nt 
contimiously changes its azimuth. According to 
Clairaut's theorem, 'the product of the radius (r) 
of the parallel ci rde (q> ) and the s ine of the 
azimuth (a) of the geodesic is a con stant · . 
Therefore, 

r sina = (R cosq>). sina 
= k (a constant) •·· 0) 

The following particulars can be derived from this, 
l. For q> = 0°, R = a and sin a = k/a. Hence, the 

geodesic intersects the equator with azimuth 
a = sin- 1(k/a) 

N: 

N 

I 

• 

Only one great circle can be drawn through any 
two points on the spherical surface which are 
not diametrically opposite to one another. 
An infinite number of great circles can be 
drawn through a si ogle point. 

P2 (A2, ¢2) 

PdA,, <l>,) P(A, ¢) 

Fig. 2.5 The Geodesic 



Theor~· 
1. RaJi\1 , ()f the generat ing glnhc. R = Ac tu nl 

radiu~ of the earth + Dcnnmitwtnr or R.E 
11. Rncfo1, of any parnllcl td>). r0 = R.tol (j) 

Example 
Ora\\ trati(uks at 10° inter\'al on scale l: 23'+ x ioc, 
for th; e\tensi0n 90{'S-40C'S around 1he pole. 

Cakutation 

64Ox l O" cm 
I. R = 

234x10r, 

= 2.73 cm 
= '2.73 cot@ (Table 2.2) 

~struction . 
i . ( A pair of straight lines intersecting at nght 

½n2les are drawn to represe_nt the four 
ca~inal meridians_)0°. 9O°E._ 180°, 90°W~: 

ii. ( From the point of i~tersect10n, concent1 ic 
½ircles are drawn with r<l> to represent the 

parallels. J . 
iii. \With the fielp of a protractor.held at the ~ole. 

\iivision points are marked at the required 

interval of-angl9 . 
iv. ( Straight lines are drawn through these_ p_omts 

( ~oining the poles to represent the meridians) 
,: 0he graticules are then properly labelle9 

(Fig. 1.8). 

Properties 
1. ParalleIJs are concentric circles. 
JI. Interparallel spacing increases rapidly 

towards the equator. 

- -

180° 

Fig. 2.8 Polar ZenithaJ Gnomonic Projection 

the globe. where the sourc_e of light ~ 

kept. 
v11. The shortest distance between two pointi 

is represented by a straight line while a 

rhumbline is represented by a nautilus (i.e .. a 

curve analogous to that of a snail's back). 
viii. Deformation increases rapidly towards the 

margin of the map. 
1x. It is l(seful to the navigators and is suited to 

small areas around the pole. 

Polar ZenithaJ Stereographic Projection 

111. The equator cannot be represented in thi s 
projection. 

iv. Meridians are straight lines radiating from the 
poles at true angular distances apart. 

V. It is an azimuthal projection as the azimuth of 
a point at the poles is truly maintained. 

vi. All great circles appear as straight lines 
as their planes pass through the centre of 

Principle 

(111 this projection. a 2-dimensional plane of 

'-projection touches the generatino olobe at either 
of the poles. It is a pers;ective pr~j~tion. \Vith the 
source of light lying at the pole diametrically 
opposite to one at which the projection plane 
touches the generating globe (Fig. 2.9). The 
parallel s are projected as concentric circles of 

-·- l 
(I) 

Table 1 ? Compu1·1tion of r 
-

<I> 40° s 50° s 60° s 70° s 
r<P = 2.73 cot <I> (cm) 

80° s 90° s 
3.25 

-
2.29 l.57 0.99 0.48 0 -



s 

Fig. 2.9 Principles of Polar Zenithal 
Stereographic Projection 

y 

varying radius while the meridians are izrojected as 

straight lines radiating from the pole~) 
ln Fig. 2.9, let XY be the projecti0n plane and S is 

the source of light. Parallel PQ is projected .on XY 
as a circle of radius NP I or NP 2 · 

Radius CE = CP = CN = CW = CS = R 
In ~CPS, CP = CS = R 
:. it is an isosceles triangle. 
and LCSP = LCPS 

LNCP = LNCE - LPCE 

. = (90° - <!>) 
LNCP being an external angle at C of ACPS, 

LCPS + LCSP = LNCP 
or, 2LCSP = (90° - <!>) 

(
90° -<1>) 

or, LCPS = 2 
XY is tangent at N. 
:. ~NP 1S is a ~ight angled triangle 

and 
NP1 
NS = tan LCSP 

or, NP 
1 

= NS.tan LCSP 

(
90° -<1>) = 2R.tan 

2 

JI 

(
90° - <J>) 

:. Rndius of any parallel !j) = 2R.tan 
2 

Theory 
i. Radius of the generating globe. R = Actual 

radius of the earth .,. Denominator of R.F. 
11. Radius of any parallel ((j>). 

(
90°-<J>) r<l> = 2R.tan 

2 

Example 
Draw graticules at 10° interval on scale I: 184 x 

l 06 for the extension 90°S-40°S around the pole. 

Calculation 

t. R = 
640xl06 cm 

I 84xl06 

= 3.84 cm 

= ·2x3.84 tan(-
90

-
0

---4> 1 
2 ) 

( 
90°-<J>) 

= 6.96 tan · 
2 

(Tab~e 2.3) 

w 
~-t-+--+-----l---10 

0) 

Fig. 2.10 Polar Zenithal Stereographic Projection 
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\ \ \°'ropN'th.\~ 
L p,,rn\k\~ m~ \'~pre~ented by. concentric 

dl~k'~ of \'twving mdH. ' ... iL ln~l-,p~,rnlk\ ~pncing grnduully increases 
t\)\\'md the ct\Untor. 

m, ~kridinn~ m~ ~tmight lines mdiuting from the poks nt trne uzitnuth npart. 
iY. The direttion hetween the two points 1s 

mnintnined. 
,~ At any point, tb~ mdiul scale is equal to the tangential scale. 
,i. lt is an orthomorphic projection. i.e., the s.h3pe of n map is truly maintained. ,ii. It is commonly used for the map of the world in hemispheres. 

Polar Zenithal Orthographic Projection 
Principle 
In this projection, a 2-dimensional plan·e of projection touches the generating globe at either of the poles. It is a perspective projection and the s~urce of_light lies-at infinity (Fig. 2.11). Rays of light passmg through the parallels become incident on the projection plane at right angles. The parallels are projected as concentric circles of varying radius while the meridians are projected as straight lines at true azimuth apart at the poles. In Fig. 2.11 , let XY be the projection plane. The sou~ce of light is at infinity (µ ). Parallel · PQ is projected on XY as a circle of radius NP 1• Radius, CE = CW = CP = CN = CS = R XY is tangent at N 

·: XY II PQ II WE, 

2J~ l ,86 1.23 0,61 

s er.: 

Fig. 2. I I Principles of Polar Zen.ithal 
Orthographic Projection 

NP 
1 
= PT = radius of the projected parallel <j) an LTPC = LPCE = <j) 

PT From rt Lil TPC - -- = cos ,t. · ' PC 't' 
or, PT = PC. cos <j) 

= Reos <j) 
:. radius of any parallel <j) = Reos <j) 

Theory . 
1. Ra~ius of the generating globe, R = Actual radiqs of the earth -=- Denominator of R.F. 11. Radius of any parallel (<j)), rep = Reos <j) 

Construction 
Similar to Polar Zenithal Gnomonic Projection (Fig. 2.12). 
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l'uhlc 2.(l ( 'otnputntioll or r,n_ 

JO" S 
6(1° S 

J-------1---40'1 S 50° s 70° s 80° s 

J.H.\ J.24 2.62 1.98 1.33 0.67 l9(f - Q) l r111 = 7 .hb :-in - "-- cm 
" -- ---------_ _:__!___~L--l--·-1--

lit . lntetpnrollel ~pocing decreases gradunll y 
townrcl the equator. , 

'"· Mtrid~nns m·c straight lines radiating I rorn the 
poh!s nt true a11.gular distances apart. . .. . . 1 · t ' , l' tlte ,,z11nuth of '"· l\ \~ nn _nz.mmtha proJe_c 1~n a," . ' .. . ed. 
mw pomt al the poles 1s tt uly mmnt~iin . 

vi. lt is an equal~area projection as at any pot~t 
· I d 1··1dhl scale ts \he product of tangentta an ' ' 

uni~ 
1 ~ vu. lt is most commonly used to show po ar are 

in a world atlas. (Fig. 2.16). 

Example .- 67 106 Draw graticules at 100 interv~l on scale l. I x 
for th; extension 40oS-90oS around the pole. 
Calculation 

i. R 

LI. f<!> 

= 
640xl06 cm 

167Xl06 

= 3.83 cm . 

. (90°-$) = 2 x 3.83.sm 
2 

(
90°-$) = 7.66sin 

2 . . 

Simple Conical Projection 
with I Standard Parallel 

Principle 

C In this projection, a simple right circular cone 
touches the generating globe along a parallel. This 
is the parallel along which distortions of any kind 
is nil and is known as the standard parallel. 
It is a perspective projection in which the parallels 
and meridians are projected directly on the inner · 
surface of the cone with respect to a light source 
at the centre of the generating globe){Fig. 2.17). 

V (Vertex of Cone). 

Fig. 2.17 Principles of Simple Conical Projection 
with I Standard Parallel 

·In Fig. 2.17, let cone VAB be the projection 
plane which touches the generating globe along pQ 
(<!>0). Therefore standard parallel PQ is projected 
as an arc of circle with radius VP or VP!' 
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~ · - CN = CQ ~ CW -= CS == R cE ::: er -
o ad ill~• ,, 

1 
:1t p and 

" n"~n ' ' \O'' \ 13 is 13 
: .,,. ,.__:CPT3 == " . 

:. t ' f( , :1 right :H\gkd tnnnglc 
l j ,·tX:- 1 

) ' , L \11)(' + LVCP) l 
Olll I' ~ - \ 
... J'' C - ~<Y _ lq()'' + LVCP)l - II• -

q(y' _ LVCP) 
l , ·cE - LVC\:> I·-· L VC'R = 90°1 

: .... 
_ pCE - .... 

VP 
, ~p\"C. PC = cot <l>o Ft\ ,111 t'ht ri -

\-P ::: pC. \.'Ol q>O ,,r. .... 
== R~ot (110 
, "'f the standard parallel. r0 = Rcot (\)0 :. R:.iJ1u~ l 

rht'On: The radius of the generating globe, R = Actual 
'· dins of the earth .;. Denominator of the R.F. 

~he division of the central meridian for II. 
spacing the parallels at i0 interval, 

nR ·o 
d _ --Xl 

I - 180° 
The radius of the standard parallel ( <1> 0), 111. 

r0 = Rcot<J)0 

Vl. 

Vll. 

Fig. 2.18 Simple Conical Projection 
with I Standard Parallel 

\ 
i 

Straight lines are drawn through each of these 
division points joining the centre of the arcs 
to represent the meridians. 
The graticules are then properly labelled 
(Fig. 2.18). 1". The di vision on the standard parallel for 

spacing rhe meridians at i0 interval, 

2rrR cos cj>0 • 
0 

l.,Pfoperties 
d? = ----Xl 
- 360° 

~nstruction 
1. A straight line is drawn vertjcal1y through the 

centre of the paper to represent the central 
meridian. 

11. It is then divided by d
1 for spacing the 

parallels. 
111. An arc of circle is then drawn through the 

standard parallel mark with radius and centre 
on the central meridian (produced if 
necessary). 

iv. Concentric arcs of circ.le are then drawn 
through each division on the central meridian t . 0 represent 0th.er parallels. 

v. ~he standard parallel is divided by d') on both 
sides on the central meridian for spacing the 
meridians. 

1. In the generic sense, this is a perspective 
projection. The parallels are concentric arcs 
of circles truly spaced on the central 
meridian. 

11. Poles are also represented by arcs _in this 
projection. 

111. The radial scale is true along all the 

lV. 

V. 

VI. 

Vll. 

meridians. 
Meridians ate straight lines truly spaced on 
the standard parallel and converging at the 
vertex of the cone. 
The tangential scale is true along the standard 
parallel only. 
Positive deformation occurs on the equator
ward segment while negative deformation 
occurs on the pole-ward segment awav from 
the standard parallel. · 
It is an aphylactic projection, i.e., one that 
maintains neither area nor shape. 



t ·es of mid-. . bl,. 1~01· smaller coun n ... It IS "'lllla C: • Vil I. • ., · ·,. / latitude or temperate regions/ 

Example . . l , at 100 interval on scale 1: 149 Draw grata:u es .·· . 2O0N-6O0S and x 106 for the extensions, 
25°W-95°W. 
Calculation 

640xlOc,cm 
1. R = l49xlO<1 

= 4.30 cm t 

Parallels to be drawn: 2O0N, 1O0N, 00, 1O0s , 11. 
d d 20°s, 30°s, 40°S,. 50°S, 60°S. The stan ar 

parallel ((\>0) ch~sen is 2O°S. · 

- Tt.4'.30 X 100 
Ill. d - 180 

= 0.75 cm 
iv. l' o = 4.3Ocot 20° 

= l l.81 cm 

_ 21t.4.3Ocos2O° xl00 

- 360° 
V. 

=0.7lcm 

Simple Conical Projection 
with II Standard Parallels 

Principle 
In this projection, a simple right circular cone is 

. taken as the projection plane. Two circles of the 
cone correspond to two different parallels on the 
generating globe and form an ordinary cone 
independent of the globe (Fig. 2.19). These are the 
standard parallels which are so selected as to 
cover two-thirds of the latitudinal extent of the 
area to be mapped. The . parallels appear as 
concentric arcs of a circle while the meridians 
appear as straight lines converging at the vertex of 
the cone. 

In Fig. 2.19, standard parallels MN(q> 1) and 
PQ(<\>2) are projected as arcs of circle M 1N I and 
P 1Q1 with radii r 1 and r :! respectively 
VP 1.a = arc P1Q1 

== true length of $2 parallel on globe 
or, r .,o. = 21tR cos $2 

V 

A 

I. 

. . . I Projection • Fig. 2.19 Principles of Simple Cornea 
with II Standard Parallels 

VM 1.a 

or, r 1.a 

or, r1 

ll 

21tR cos~2 
= 

a 
= arc MIN l \lei on glohl v 

f "' para = true length O 4' 1 

== 2nRcos<l> 1 

21tR cos<\> , 

a 

= VM1 - VP, 
= M1P1 

I 
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Table 2. I 4 Co1npu1otion of do 
400N 500 N 

60° N 

d@ = l.00705 cos <l> (cm) 
0.95 o.87 

11 . d 
rc x5.77 = --xl0 ==> I.097 cm 

180 
111. r~ = 5.77 cot<\> cm (Table 2.13) 

t\'. = 2nxs.77cos_!x10' 
d<i> 360° 

= 1.00705 cos<l> cm (Table 2.14) 

Cylindrical Equal-Area Projection 

Principle 

(_

Lainbert developed this projection in which a 
simple right circular cylinder touches the globe along the equator. parallels and meridians are both 
projected as straight lines intersecting one another 
at right angles)fig. 2.35).(!angential scale l!long all the parallels is kept equal to that along the equator. To maintain troe area, radial ·scale along a 
meridian is made reciprocal to. the tangential scale 
at that point. Hence, parallels lie at different 
heights above the equator. The interparallel spacing 
decreases rapidly towards t~e pole\ as parallels are 
all of same length as the equator.) · 
In Fig. 2.33, let the cylinder ABCD touch the globe 
along the equator. 
The parallel PQ is projected as straight line at 
PM distance away from WE. · 
P,Q

1 
II WE and LPOM = <I> ' Length of parallel ( <l>) 011 globe = Z1tR cos·<j>. 

Length of parallel (<I>) on projection = 21tR 

. t . I 21tR • • angentia scale = ---21tR cosq> 

= sec<!> 
Let S be another parallel ... (i) from P(,P) at d,P angle away 

0.50 
0.11 

o.65 

wa----------:c~-A------1 M 

s 

N ·1 
RS=TS 

SP= Rd<I> SP=~ 

- ~ EP = R<i> :. RS=j¾ 

---------------
A 

Fig. 2 .35 Principles of Cy Ii ndrical EquaJ-Area projectl 

:. the true angular distance of d<I> on globe" i.J 
Let dy be the correspondina linear distance 

01 ~ f . C rom the equator on . projection. 
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'C('Li(111 

-------------------------------~ 
dy -

d. 31 :-r:tk -::: lt .d$ 
• f/1 I, 

· · .. , :lll ~qu:1\ urea pmjc~t ion, 
~· • , it i , • l l ~ 11l( l , ., t;Hl'UC lllt:l S~il C = l 

I. l s(:1k -.: ~ 
r;I~ t,1 • 

... (ii) 

,t~ .:-c~<!> 
l)f. ~ ,d(!\ 

\,r. d~ 
= R cos q>.dc)> 

• 1 ,,1rllil1n, 11 , 1n (~ · . 

iii. Through each of these division points, straight 
lines ate drawn perpendicular to the equator to 
rcprnsent the meridians. 

iv. 

V. 

On the central meridian , heights of different 
parallels (y~

1
) .. from the equator are ~arke?· 

Through each of these points, straight lines 
are drawn perpendicular to the central 
meridian to represent the parallels. d 

vi. The graticules are then properly labelle ) 
(Fig. 2.36). 

· J \ty ::: R J co~ q>.d<\) 

,, ::: Rsinc)> ~erties ' 
i. Parallels are represented by a set of parallel 

fbror)' . 
. Radius of the generatmg globe, R ==.. Actual 
1. radius of the earth -:- Denominator of_ R.F. 

oi,·ision along the equator for spaci'ng the 11. . 
meridians at i0 interval, 

21tR ·.
0 

d = 360° ~• 

111 . Hejg'ht of any parallel above equator, · 
yq> = R sin <I> 

c/tonstruction 
1. A straight line is drawn horizontally through 

the centre of the paper to · represent the 
equator. 

11. It is then divided by d for spacing the 
meridians. 

90°W 60°W 30°w 

straight lines. 
11. Parallels are of same the length as the equator 

(2nR). 
iii. Parallels are variably spaced on the meridians. 
1v. · Interparallel spacing decreases rapidly toward 

the pole. 
v. The tangential scale rapidly increases 

poleward and is infinity at the poles. 
vi. _ Meridians are parallel straight lines. truly 

spaced on the equator. 
vu. Meridians are of same· length equal to the 

diameter of the globe (2R). 
viii. The intermeridian spacjng is uniform on all 

the parallels. 
1x. The pole is represented by a straight line of 

length 2nR. 

30°s 

30°E 60°E 90°E · 120°E 150°E 

Fig. 2.36 Cylindrical Equal-Area Projection 
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Table 2.15 Computation of Y <l> 

q> 300 N/S 600 N/S 900 N(S 
y <I> = 2.15 sin <I> ( cm) 

1.075 l.862 2. J 50 

x. t.· h two principal At any point, the product o t e 
scales is unity. . It is an equal-area projection. , \ .: :~ . The shape is largely distorted near the polesy 

Exa1nple · 
Draw graticules at 30° interval on seal~, 
l 06 for the whole globe. 
Calculation · 

1. R 

11. d 

111. y~ 

640xl0 6 cm 
⇒•2.15 cm 

297 X 106 

2
7tX

2.15 x30° ⇒ 1.128 cm 
360° 

= 2.15 s_in<I> cm (Table .2.15).' 

:Mercator's Projection 

l:297 x 

Principle · · . . . This is a cylindrical orthomorphic. projection designed by F·lemish, Mercator and Wright. In this, . · a simple right circular cylinder touches the globe al_ong the equator. All the parallels are of the same length equal to that of the equtitor and · the . meridians are . equispaced on the parallels (Fig. 2.37). Therefore, the tangential scale increases infinitely toward the pole-. To maintain the property of orthomorphism, the radial scale is made equal to the tangential scale at any point. Hence, parallels are variably spaced on the· meridians and the poles can never be represented. The patalleJs and . meridians are represented by sets of straight lines intersecting at right angles. In Fig. 2.37, let the cylinder ABCD touch·the globe . along the equator. The parallel, PQ, is projected as straight line at PM distance away from WE. n n I ln,r. ~-- .J /nr--. .. • 

s 
N 

RS: TS 

E ~__;, ___ .._-,.o 
. A 

F. 2 37 Prine_ iples uf Mercator 's Projai: cl 1g. . 

· • . 1- ear dista!ll' Let dy be the coriespondrng_ 10 

from .the equator on projection. c 

dy 
radial scale = R d$ . 

. 1 Rcoil 
Length of parallel (<I>) on glo?e ~o~n:= 1~~ 
Length of parallel (<I>) on proJectt 1 

2nR 1 

· tangential scale == ~ 
== sec (j) 
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