il‘he term projection s commonly used to
designate the phenomena of image production of
an object onto a surface or plane. This involves the
application of a set of principles, procedures and
purposes.(Broadly speaking, map projection is
defined as the systematic drawing of a network of
parallels and meridians on a plain sheet of paper
portraying a part or whole of the earth’s surface.
Naturally. it is scale-dependent and is done in
accordance with a set of geometric and
mathematical principles to satisfy certain
objectives of the user.)

Map projection is a device by which the
curved surface of the earth is represented on a flat
plane{ The operational process essentially involves
dimensional transformation, i.e., a 2-dimensional
representation of the 3-dimensional figure of the
earth. This produces deformations which are

inevitable because the surface of the generating

globe and the surface or plane of projection are
not geometrically applicable.>
Mathematically, the general equations
describing such transformation in map projection
are:
u=f (A ¢) s {1
v="1, (A 0) e (1E)
where, A, ¢ define the coordinates of positions on
the original 3-dimensional surface, u, v describe
the corresponding coordinates on the transformed
2-dimensional plane and f, and f, are real, single-
valued. continuous and differentiable functions of
A and ¢ in certain domains so that the Jacobian
determinant does not vanish:
du du
R 7
T=1ov ov

oA~ 90

# ()

Map l’rojectio
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On the transformed plane, the rectangmif
coordinates (x, y) and polar coordinates (p, Fy ; ,
the same point with geographical C00rdinaw"

(A, ®) or spherical coordinates (6, r) are giVenh; |

x=f, (A, ¢) p=f,(8,r)
y=f, (A, ¢) O A=f, (6,r)

Therefore, x and y or p and A are specii
functions of latitude and longitude and one singyf
point (A, ) or (8, r) on the earth is representedy§
one and the only point (x, y) or (p, A) on the map
Thus, map projection is reversible and unique. §

Scale Factor :
Map projection is a 2-step process in which t§
earth is first reduced to a generating globe of (f
desired size and then the generating globe i 3
projected onto a plane. The transformation of (f
globe to a plane is identical to the problem of
trying to make the skin of an orange exactlf
coplaner and coincident with a table top withouf
contortions, stretching and even tearing. Henctf
deformation and distortions are inevitable in mapf
projection. 1

The scale in which the generating globe (af
3-dimensional figure) is conceptualised is calledf
the principal .s'cale)On maps it is correctly f
maintained only at selected points or lines (i
the point of tangency or the lines of contact of the
projection plane or developable surface with the §
generating globe). Elsewhere on the map where 4
distortions occur, the principal scale becomes §
significantly different from that in which the map §
is actually generated./The scale of the resultant i
map is termed as the real scale. It is the
differential stretching and contortions of the.
generating globe that make the rea) scale unequ,al ‘
at each and every point on the ma:{)'lence. on'the.



\ Lq‘ l‘l\\l‘\‘"““

Jnt ap. & one-to-one cun_\‘s.ppmic ce for all
resultant a practical impossibility. (The o
Ponfh\ ::h.c principal scale and the real segle at
t‘\:i\\l:k‘:m on the map is called l!\C scale factor yy
;h;;l pomt. Mathematically speaking,

Jeale Factor,

Scale Fac Denominator of the Principal Scale

F=

177}

Denominator of the Real Scale

Radial Scale Factor and Tangential Sca!e Factor
Tissot's (1830) law of deformation states that
+ . at each point of the spherical surface there
exists at least two perpendicular directions which
reappear at right angles to each other on the
projection, although all other angles at that point
may be altered from their original disposition.’ On

a map these two directions are as follows—one

along a parallel and the other along a meridian. The
scale factor measured along a parallel is called the

parallel scale factor or tangential scale factor
while that measured along a meridian is called the

meridional scale factor or radial scale factor.
The equations for derivation are:

Tangential Scale Factor (TSF)

along a parallel ( 0)
( Denominator of the Real Scale )

£Denominat0r of the Principal Scale ]

along the same parallel ()

Length of a parallel on globe (L)

- Length of the same parallel on map (L,,,)

Hence, along a parallel 0. tangential scale factor,

LO& : .
TSF = L ) wwi (1)

om
and tangential scale is expressed by

| : TSF .. (i)

Radial §¢qjp Fuctor (RSF)

Denominator of the Princi pal Scale

along a meridian (A)
Denominator of the Real Scale
along the same meridian (\)

21
e

Length of a meridian onglglf_(_liﬁ,v_)’_

. -~ ap(L,,.)
Length of the sume meridian on mdP ( . rm
Hence along a meridian A. radial scale factor,

L.
RSF = D .. (i11)
le
and radial scale is expressed by .
l: RSF a8
Deformation

Along the two principal directions, it is the balance
of the scale factors that determines the nature and
magnitude-of deformations on a projection.@here
are four principal types of deformations. These are
deformations in area, shape, distance and
direction, which are mutually exclusive in nature.
On a projection transformation, scale factors are
simple vectors, their products and resultants
determine the specific property of a projection.

On the basis of this, projections are classified into
five types:

1. Equal-Area Projections
In these; the area of a segment on the
generating globe is truly preserved on the
corresponding segment of the graticules. At

any point of such projections, the product of

the two scale factors -is unity, or, in other
words,

RSF x TSF = |

These are also called authalic,
homolographic or equivalent projections.
2. Orthomorphic Projections
Here, the shape of a segment on the
generating globe is truly preserved on the
corresponding segment of the graticules. At
any point of such projections, the two scale
factors are exactly equal in magnitude. The
necessary condition of orthomorphism is.
therefore, the equality of scales along the two
principal directions, i.e.,
RSF =TSF
These are also known as true-shape o
conformal projections.
3. Equidistant Projections

In these, the distance between any (wo points
on the generating globe is truly preserved
between the corresponding points on the
graticules.
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Azimuthal Projections

Here the azimuth defining the directions
between any two points on the generating
globe is truly preserved between the
corresponding two points on the graticules.
Aphylactic Projections ‘
In these, neither of the above four properties
is truly and fully preserved. Such projections

are genetically neither azim
equidistant, nor equivalent and

Classification of Map Projectigp,
Map projections are fundamenta])
based on the extrinsic and intrinsic prq
extrinsic properties include the

parameters of transformation, i.e., the Nty |

Practicy Gey

Uthal '
C()nf%?

Perties.f :
R

h

&

el

Table 2.1 Classification of Map Projections

Classes/Sub-classes

iterl Parameter

| Criteria a ' s et i

| I. Direct or Spheroidal Projection

| Datum Surface II. Double or Spherical Projection

i III. Triple Projection ;:

1 Ist Order (plane)  2nd Order (aspect) 3rd Om ;

. 5 (g

| 1.EXTRINSIC | B. Plane or Surface L. Planar a. Tangent 1. Normal
of Projection I. Conical b. Secant 1i. Transvery ;

, M. Cylindrical c. Polysuperficial iii. Oblique

| L. Perspective a. Gnomonic

. Method of II. Semiperspective \ b. Stereographic §

Projection III. Non-perspective c. Orthographic ,

IV. Conventional

2. INTRINSIC

I. Azimuthal
II. Equidistant
[l Equivalent or Authalic or Homolographic
IV. Orthomorphic or Conformal
V. Aphylactic

. Appearance of

Parallels and
Meridians

)

L. Both parallels and meridians are straight lines ‘
II. Parallels are straight lines and meridians are regular |
curves ,
lIl. Parallels are regular curves and meridians are straight £
lines
IV. Both parallels and meridians are regular curves
V. Parallels are concentric circles and meridians are
regular curves. i
VL. Parallels are concentric circles and meridians are
radiating straight lines
VI Parallels are irregular curves and meridians are
radiating straight lines
VIII. Both parallels and meridians are irregular curves

e e

== ™~ e

. Geometric

shape

I. Rectangular
II. Circular
I Elliptical
IV. Parabolic
V. Butterfly

VL Others -
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are 90°N and 90°S. It is measured Cllht.’,l‘
south of the equator and 18
as °N or °S. Through each
and centred

the poles
to the north or to the
accordingly specified
latitude. circles parallel to the equ.utor e
on the polar axis may be imagtlncd. These d;f:
called parallels of latitudes or simply Ifaralle s.
Altogether there are 180 parallels at 1° mte1:vals.
Of the parallels only the equator is a great circle.
The radius and the length of the parallels gradual.ly
decrease from its maxima at the equator (o HS
minima at the poles.

The semicircular lines joining the two poles
and intersecting the parallels at right angles are
called meridians or lines of longitudes. All

meridians are equal in size. There are 360

meridians at 1° intervals. Of these, the one that
passes through Greenwich is taken as the
reference line and is called the prime meridian.
The longitude of a place is described as the angle
subtended by the meridional plane passing through
a place on the plane of the prime meridian, i.e., 0°
at the centre of the earth. It is measured either to
the east or to the west of the prime meridian and
1s accordingly specified as °E and °W.

Graticule

CIt refers to the net or mesh of mutually
intersecting parallels and meridians drawn to a
certain scale and based on certain principles. The
term graticulation is used to specify the

procedures by which the network of graticules are
drawn.) '

Generating Globe

<l[ refers to the globe from which projections are
generated or developed. Normally it is a small
skeleton globe made of glass or wire (Fig. 2.2).
The parallels and meridians are shown by black
lines (glass globe) or wires (wire globe) placed at
their true angular distances apart. Naturally the
generating globe is a geometrically accurate earth
reduced in size.

Projection Plane

It is a 2-dimensional geometric plane upon which
the parallels and meridians are usually projected.
In case of a perspective planar projection, the

A—
5rojection Plane
N (Point of Tangen,,
Y
C
0
W E
Generating
Globe
S

Fig.2.2 Projection Plane and Generating Globe

projection plane touches the generating globe 4
single point (Fig. 2.2).

, Developable Surface

(In case of planar projections, only a single poin
truly representgd with the exact one-to-o:
correspondence,/Obviously, from this point
tangency, &ue distortion on a map increases in¢
directions. To minimise it, the point of commé-
with the generating globe is maximised by using
projection surfaces that can easily be develop
into 2-dimensional geometric planes. Su
projection surfaces are known as developali
surfaces, €.g., a cone or a cylinder. right circul§
cone or a cylinder usually touches a generali“:%g’
globe along a parallel and may even intersec
along two different parallels in certain desit'
situations (Fig. 2.3). Along these parallels.‘on&“f
one correspondence is truly maintained involvit
no error and are termed as lines of zero distortit"
When developed, a cone becomes a sector
circle and a cylinder becomes a rectandt
both being parts of a 2-dimensional plar®
Notably, when the angle at the vertex of a ¢
becomes 180°, the cone is developed into
projection plane touching the generating glob® “*
a single point only. Again, when the apex of 2 Co".“"
lies at infinity, the cone is developed i"w;
cylinder touching the generating globe along ! "
equator.
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Cone as developed /
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P’
Cylinder as developed o
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Fig.2.3 Developable Surfaces: Cone and Cylinder

Central Meridian

For a given longitudinal extension, it refers to that
meridian, which lies exactly at the median or
middle-most position of that extension. It has only
constructional importance and is normally drawn
as a straight line. )The mesh of graticules on one
side of the central meridian (CM) is in fact the
mirror image of the other side.

Standard Parallel

The parallel(s), along which a projection plane or
a developable surfuce touch(es) or intersect(s)
the generating globe, are called standard
Parallel(s). Along the standard parallels, the
langential scale is essentially 1:1. Hepce, these
are always the lines of zero dislortion.ﬁ

Constant of a Cone

(It is defined as the ratio between the angle at the

vertex or apex of a cone when developed (o) and

the angle at the pole of the generating globe
(360°))(Fig. 2.4).

. (04
CTherefore, the constant of a cone, n = ——
_ ‘ 360°
Since o depends on the standard parallel (),

n is a direct function of 0, .

The two extreme
situations are;

i.  when ¢)=0° a cone is transfo
special cylinder with ¢ = (°.
00
Therefore, n = ——
360°

rmed into g

ii. when ¢)=90° a cone is trans
plane and o becomes 36(0°

(i)

formed ing a
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Fig. 2.4 Constant of a Cone

360°
360° .
= ] .. (11)
Hence. 0 < n < 1 is the boundary condition of

the constant of a cone.
From Fig. 2.4,

Therefore. n =

o. I'm(l = 100
100
or, 00 = —
I’oo

Therefore, n
o
360°

I,

360°.s,,

2n.R.cos¢, |.. Iy, =2nR.cos¢, |
- 360°R.cot ¢u rdm =R.cot 4)0

= sin¢,.

Thus, in the simplest case of a conical
projection with one standard parallel, the constant

of a cone is equal to the sine value of the standard
parallel.

Cases of Projection
This is defined as the geometric relation expressed

as the angle between the axis of symmetry of the

plane of projection and the polar axis of the globe
(B). There can be three cases of projection—
normal, transverse and oblique. In the normg|
case, B = 0° in the transverse case B = 90° and i
the oblique case 90° > B > 0°.

Aspects of Projection

This refers to the attitude of the plane or the
surface of projection. The plane of projection may
be tangent at one point only or intersect along a
parallel circle. A polyhedric surface, (i.e., one
which has more than one plane) may be tangent at
a number of points. Similarly, a cone or a cylinder
may be tangent along a parallel or may interest
along two parallels. A polyconic or polycylindrical
surface may even be chosen for a projection.
The main objective is to maximise the points of

- contact in order to minimise the cumulative

deformation.

él‘erspective Projections
|

n these, graticules are drawn from 2 transparent
generating globe made of glass with the help of a
light source. Rays emerging from the sources cast
shadows of parallels and meridians on the
projection plane, .8, Gnomonic projection,
Stereographic projection, Orthographic
projection and the Simple Conic projection with I-
standard parallel.
anddrd paraliel.
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(‘omvn(ionnl l’rojcctiuns .

These dre NON-pErSpective: projections constructed
following & N¢t of conventions purely based on
mathematical —operations postulated by o
cartographer o portray the whole globe with
certain objectives.

The Great Circle

If a plane intersects a sphere, the resulting section
of the curved surface which is traced on the plane,
is a circle. If the intersecting plane passes through
the center of a sphere, the resulting section is a
circle. whose radius is the largest which can occur
and is equal to the radius of the sphere itself. This
is defined as a great circle. Thus a meridian is a part
of a great circle. The equator is the only parallel
which is a great circle and all other parallels are
small circles. If the plane does not pass through the
centre of the sphere, the radius of the resulting
circle is less than that of the sphere. This is called

a small circle. The special features of great circle
are:

B The axis of two or more great circles cannot
coincide.

B Intersecting great circles bisect each other.

B The plane of a great circle divides a sphere into
Iwo equal halves.

®  The section of all great circles passes through
the centre of the sphere; therefore the centre
of the sphere is the common centre of all the
great circles.

. Only one great circle can be drawn through any
Wo points on the spherical surface which are

. not diumetricully opposite to one another.

An infinite number of great circles can be
drawn through a single point.

27

| An infinite number of great circles can be
drawn on a sphere.

The shorter arc of the great circle through two
Points is the shortest distance between the
points on the spherical surface.

The Geodesic
Similar (o the great circle arc, the shortest possible
connection between two points on the ellipsoidal
surfuce is defined as the geodetic line or, for
convenience, the geodesic. Progressing along this
curved. line from point to point. the tangent
continuously changes its azimuth. According to
Clairaut’s theorem, ‘the product of the radius (r)
of the parallel circle (§) and the sine of the
azimuth (o) of the geodesic is a constant’.
Therefore,
rsinoe = (R cosd). sinc
= Kk (a constant) . (1)
The following particulars can be derived from this,
I. For ¢ =0° R =aand sin o = k/a. Hence, the
geodesic intersects the equator with azimuth
o = sin-l(k/a)

j:

Geodesic

P1 (}\'11 q)1)

-

Fig.2.5 The Geodesic
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Theory

i, Radws of the generating globe, R =
radius of the carth + Denominator of R.E

i Radius of any parallel (0). 1, = Rcot 0

Actual

Example
Draw graticules at 10° interval on scale 1
for the extension 90°S-40°S around the pole.

Calculation

234 x 10°

" 640x10%cm
1. =
234x10°
=273 cm
.ty = 273 coto (Table 2.2)

VC(nstruction

7 : ; .
i. [ A pair of straight lines Inter
neles are drawn (o represent the four

cardinal meridians)0°. 90°E. 180°, 90°W):
ii. | From the point of intersection, concentric
ircles are drawn with t, to represent the
parallels.
iiii. { With the Kelp of a protractor held at the pole.
ivision points are marked at the required

secting at right

interval of angle.
iv. ( Straight lines are drawn through these points

joining the poles to represent the meridians.
\. &The graticules are then properly labelled

(Fig. 2.9).

Properties
i, Parallells are concentric circles.

ii. Interparallel spacing increases
towards the equator.

The equator cannot be represented in this
projection.

Meridians are straight lines radiating from the
poles at true angular distances apart.

v. Itis an azimuthal projection as the azimuth of
a point at the poles is truly maintained.

All great circles appear as straight lines
as their planes pass through the centre of

rapidly
iii.

v,

Vi,

Practical Gieg,

. /’_/________—\AT"
I ‘

Fig.2.8 Polar Zenithal Gnomonic Projection

the globe. where the source of light j
kept.

The shortest distance between two poin
is represented by a straight line while,
rhumbline is represented by a nautilus (1.e.1
curve analogous to that of a snail’s back).
Deformation increases rapidly towards th
margin of the map.

It is useful to the navigators and is suited b
small areas around the pole.

VL.

viil.

Polar Zenithal Stereographic Projection

Principle

Qn this projection, a 2-dimensional plane of

rojection touches the generating globe at either
of the poles. It is a perspective projection, with the
source of light lying at the pole diametrically
opposite to one at which the projection plane
touches the generating globe (Fig. 2.9). The
parallels are projected as concentric circles of

Table 2.2 Computation of r,,

o | 40°S

50°S | 60°S | 70°5 | s0°s | 90°S

Iy 5 .
o= 2.73 cot ¢ (cm) 3.25

|

2.29 [ 1.57 ( 0.99 | 048 Lo




Fig.2.9 Principles of Polar Zenithal
Stereographic Projection

varying radius while the meridians are projected as
straight lines radiating from the pole$

In Fig. 2.9, let XY be the projection plane and S is
the source of light. Parallel PQ is projected on XY
as a circle of radius NP, or NP,

Radius CE=CP=CN=CW=CS=R
InACPS,CP=CS =R

=it is an isosceles triangle

and LCSP = LCPS
ZNCP = ZNCE - ZPCE
=(90° - 0)

ZNCP being an external angle at C of ACPS,
ZCPS + LCSP = £NCP
or, 2/CSP = (90° - 0)

90° -0
or, LCPS = |77

2
XY is tangent at N.
“. ANP S is a right angled triangle

and NP CSP
NS = tan £
or, NP, =NS.tan ZCSP

90° -0
= A _—
2R an( 5 )

) . 90° - b
*. Radius of any parallel ¢ = 2R.tan ——T

Theory

i Radius of the generating globe. R = Actual
radius of the carth = Denominator of R.F.

il.  Radius of any paralle! (¢).

90°-¢]

= 2Rt
o an( 5

Example
Draw graticules at 10° interval on scale 1:184 x
10° for the extension 90°S-40°S around the pole.

Calculation
) 640%10°cm
. R =——
184x10°
= 3.84 cm

i1, =2x3.84tan[

90°— ¢
-

O—

9
= 6.96tan| —
&

¢ ] (Table 2.3)

Fig.2.10 Polar Zenithal Stereographic Projection
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Properties _—

L Pavallels are vepresented by concentric
creles of varying radit. ‘

W Inter-pavallel spacing gradually increases

towand the equator. ‘

Meridians are straight lines radiating from the

poles at true azimuth apart, .

. The direction between the two points is
mantained.

V. Atany point, the radial scale is equal to the
tangential scale.

i,

M. It is an orthomorphic projection, i.e., the
shape of a map is truly maintained.
Vil It is commonly used for the map of the world

in hemispheres.

Polar Zenithal Orthographic Projection

Principle

In this projection. 3 2-dimensional plane of
projection touches the generating globe at either
of the poles. It is a perspective projection and the
source of light lies at infinity (Fig. 2.11). Rays of
light passing through the parallels become incident
on the projection Plane at right angles. The
parallels are projected as concentric circles of
varying radius while the meridians are projected as
straight lines at true azimuth apart at the poles.

In Fig. 2.11, let XY be the projection plane. The
source of light is at infinity (u). Paralle] PQ is
projected on XY as 3 circle of radius NP,.

Radius, CE=Ccw = cp = CN=CS=R

XY is tangent at N

= XY PQ | WE,

5()0 S ()(‘)i‘s _7()“8 i 8()”8 ‘
~—_ \(}(’,
253 | L8O | 123 | 0
e h
I N
X P N R cos ¢ P,
Q T P
0
R
¢
w C |
S o

Fig.2.11 Prihciples of Polar Zenithal
Orthographic Projection

NPl = PT = radius of the
ZLTPC = /PCE = (0]

projected parallel ¢ an

PT
From rt ZATPC, pc = cos (0]
or, PT =PC. cos (0]
= Rcos ¢

- radius of any paralle] ® = Rcos ¢

Theory .

1. Radius of the generating globe, R = Actual
radius of the earth - Denominator of R.F.

il. Radius of any parallel (¢), r, = Reos ¢

Construction

Similar to Polar Zenithal Gnomonic Projection
(Fig. 2.12).
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Table 2.6 Computation ol r,

f— ) ]

| 0 307 S

)
} - ‘
|

| 00 ¢ |
r, = ‘-(\(\.\II\L : ]Cm BERE R

4078

\
[

|

‘ 1,24
] :

i Interparatlel spacing decrcases gradually
toward the equator.
V. Menidians are straight lines radiating from the

poles at true angular distances apart. ‘.
V. Ttis an azimuthal projection as the azimuth o
any point at the poles is truly maintained.

Vi. It is an equal-area projection as at any pomt
the product of tangential and radial scale 18
unity.

vii. Ttis most commonly used to show polar areas
in a world atlas. (Fig. 2.16).

Example

Draw graticules at 10° interval on scale 1:167 x 100
for the extension 40°S-90°S around the pole.

Calculation
640x10°cm

167x10°
= 3.83 cm.

1 =

1. ro

(90°-0
=2 x 3.83.sin

90°- ¢
2

Simple Conical Projection

with I Standard Parallel

= 7.66 sin(

Principle

In this projection, a simple right circular cone
touches the generating globe along a parallel. This
is the parallel along which distortions of any kind
is nil and is known as the standard parallel,
It is a perspective projection in which the parallels
and meridians are projected directly on the inner
surface of the cone with respect to a light source
at the centre of the generating globe)(Fig. 2.17).

50° S 607 S
2.62 1.98
_ ’ -
0.
N
P2
Standard
Paralg
Q T p
C 0.
1 e ae e~ ~ippepra— - E
” - ~
A 8
S
V (Vertex of Cone)

Fig.2.17 Principles of Simple Conical Projection
with I Standard Parallel

In Fig. 2.17, let cone VAB be the projectior
plane which touches the generating globe along P
(@y). Therefore standard parallel PQ is projected
as an arc of circle with radius VP or VP,.



_P=CN=CQ=CW=CS =R
FHETAS - Y ‘
Radi et at Pant ,
vBis®T PR =90
A e aright angled triangle
nd AT T - (£VPC + ZVCPY)
P\ ¢ I‘§()‘ (00" + ZVCM)
o° = £LVCP)
\OE = 2VCP [ ZVCE = 90°)
/PCE

O

VP
he 1t LAPVC, *P—(: = cotQ,
Erom u
\p = PC cotdy
. = Root (D‘,
of the standard parallel, r; = Reot ¢,

i

i R.‘.\i"\i\

The radius of the generating globe, R = Actual

radius of the earth = Denominator of the R.F.
. The division of the central meridian for
- spacing the parallels at i° interval,

e

Fig.2.18 Simple Conical Projection
with I Standard Parallel

. vi. Straight lines are drawn through each of these
d, = 18O°Xl division points joining the centre of the arcs
iii. The radius of the standard parallel (¢), to represent the meridians.
r, = Reotd, vii. The graticules are then properly labelled
i. The division on the standard parallel for (Fig. 2.18).

spacing the meridians at i° interval,

operties
2nRcos®, . L/P(p

d, = —— 10 o 1. In the generic sense, this is a perspective
) 360° projection. The parallels are concentric arcs
/ of circles truly spaced on the central
— Construction " meridian.
I Astraight line is drawn vertically through the  ii. Poles are also represented by arcs in this
centre of the paper to represent the central projection.
meridian. ifi. The radial scale is true along all the
i It is then divided by d, for spacing the meridians.
parallels.

iv. Meridians are straight lines truly spaced on

the standard parallel and converging at the
vertex of the cone.

An are of circle is then drawn through the
Standard parallel mark with radius and centre

on the central meridian (produced if v. The tangential scale is true along the standard
necessary ),

parallel only.
Concentric arcs of circle are then drawn  vi.
through each division on the central meridian

Positive deformation occurs on the equator-
y 0 represent other parallels.

ward segment while negative deformation

occurs on the pole-ward segment away from
‘he Standard parallel is divided by d, on both the standard parallel. )

Sides on the central meridian for spacing the  vii. It is an aphylactic projection, j.e.

Meridiang, |

LA , one th
maintains neither area nor shape e
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: ies of mid-
i It is suitable for smaller countries of n
viii. It is fler co
latitude or temperate leglons)

Example ' N |
Draw l:gr;.lticules at 10° interval on scalf 1:149
% 10 for the extensions, 20°N-60°S and
25°W-95°W.
Calculation

640x10°cm

LR = oo
=430 cm
ii. Parallels to be drawn: 20°N, 10°N, 0°, 10°S,
©20°S, 30°8, 40°S, 50°S, 60°S. The standard
 parallel () chosen is 20°S.

1.4.30

180
= (.75 cm
= 4.30cot 20°
= |1.8] cm

21.4.30c0s 20°
= X

360°
= (0.71 cm

x10°

. d =

iv. T,

d,

Simple Conical Projection
with II Standard Parallels

Principle

In this projection, a simple right circular cone is
- taken as the projection plane. Two circles of the
cone correspond to two different parallels on the
generating globe and form an ordinary cone
independent of the globe (Fig. 2.19). These are the
standard parallels which are so selected as to
cover two-thirds of the latitudinal extent of the
area to be mapped. The parallels appear as
concentric arcs of a circle while the meridians

appear as straight lines converging at the vertex of
the cone.

In Fig. 2.19, standard parallels MN(¢,) and

PQ(®,) are projected as arcs of circle M N, and
P\Q, with radii r, and r, respectiv
VP .o =arc P,Q,

= true length of 9, parallel on globe
or, o = 2nRcos ¢,

ely

Fig.2.19 Principles of Simple Conical Pr0
with II Standard Parallels

eclior

2nR cos 0,
I‘2 = o
VMoo =arc M\N, el ootV
= true length of 0, P4
or, .00 = 2nRcos 9,
27R cos 0, o
or, T, =
Now,
r,—r, =VM -VP
=MpP,
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Table 2

———

Ty = 5.77 cot O (cm)

R

x5.77
TR T «10 = 1.097 cm
180
. T, = 5.77 cot¢ cm (Table 2.13)
.
v 4 = 2mxST1C00 o
¢ 360°
— 1.00705 cos¢ cm (Table 2.14)
Cylindrical,Equal-Area Projection
Principle . .
s projection 10 which a

Lambert developed thi
e globe

simple right circular ¢y

along the equator.
projected as straight
at right angles)Fig. 23
all the parallels is kept equa

equator. To maintain true area,
meridian is made reciprocal to the tangential scale

at that point. Hence, parallels lie at different
heights above the equator. The interparallel spacing
decreases rapidly towards the poleg as parallels are
all of same length as the eduator.s '
In Fig. 2.33, let the cylinder ABCD touch the globe
along the equator.
The parallel PQ is projected as straight line at
PM distance away from WE.
P,Q, || WE and ZPOM = ¢
Length of parallel (¢) on globe = 2mR cos 0.
Length of parallel (¢) on projection = 21R

2nR
21R cos ¢

linder touches th
Is and meridians are both

Paralle
g one another

lines intersectin
5).@‘angential scale along
| to that along the

radial scale along a

. tangential scale =

SP=Rdp SP=4

— . _ﬂ
EP=Ro - RS=g

Fig.2.35 Principles of Cylindrical Equal-Ared Project’

n globe =R

. the true angular distance of d¢ ©
distance 0

I‘Jet dy be the corresponding linear
from the equator on. projection.
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i, T : - i straight
! Through each of these division points, stralg

jial scale = qu, e (i) lines are drawn perpendicular to the equator t0
-, radid T —— ~ represent the meridians. ‘ crerent
gjpee 1 B an t"l‘\‘:“m;““‘l w“ic - | ) V. On the ccntr;il meridian, heights of (lh keg
il el X (ST parallels (y,) from the equator are marked:
& o . V.. Through each of theﬁe points, Stl;;"g entrail
o R d«ﬁ"\ are ‘d‘rawn perpendicular to :'C ¢
= Reoso.dg . lnerl(llan to represent the parallels. betled >
or, s Vi. The graticules are then properly labe :
B\ !m\~:_~1'.\ll\“‘~ (F‘g 2.36).
B [dy = R Jcos 9.do ‘/(
T . roperties ‘
y =Ksng 1. Parallels are represented by a set of parallel
straight lines.
Thcor)'ﬁm of the generating globe, R = Actual '+ Parallels are of same the length as the equator
: Ri};ju\“ of the earth + Denominator of R.F. (2nR). , i
. ™ s long the equator for spacing the ui.  Parallels are variably spaced on thg meridians.
- D'\!‘\l.m\a oo epval : % iv. - Interparallel spacing decreases rapidly toward
mend_)ans at 1° nterval, the pole.
_ 2nR Xi° V. The tangential scale rapidly increases
4= 360° - poleward and is infinity at the poles.
iii. Height of any parallel above equator, vi. Meridians are parallel straight lines truly
y, = Rsing 'spaced on the equator.
vii. Meridians are of same' length equal to the
%mstruction diameter of the globe (2R).
i. A straight line is drawn horizontally through  viii. The intermeridian spacing is uniform on all
the centre of the paper to represent the the parallels.
equator. 1. The pole is represented by a straight line of
ii. It is then divided by d for spacing the length 27R. |
meridians.
90N ;50°W 120°W  90°W 60'°W 30°W 0° 30°E  60°E  90°E -120°E 150°E' o
A e P el MR e S
| \,% oy f)> gw : ﬁw ¢ 60°N
ot R gt || o
3 < L N TS
] 0 — | { . \i A M §§\‘/§;“{\,\WA 0°
\ iﬁ A
30°S — -4 E/\VI\/V 30°S
60| éj:ﬂ‘ ™
Srshe ‘ g(o)zg
150°W  120°w 90w  60°W  30°W  0° 30°E  60°E  90°E 120°E  150°F

-3

Fig.2.36 Cylindrical Equal-Area Projection
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Tzlble 2.15 Computation of y,, )/4
O [30° N/S[60° N/S 90° N/S

Yo =2.15 sin¢ (cm) 1.075 | 1.862 2.15041

At any point, the product of the two principal
scales 1s unity.

xi. It is an equal-area projection. ,
xii. The shape is largely distorted near the poles>

Example 7
Draw graticules at 30° interval on scale, 1:297 X
10° for the whole globe.

Calculation

o .
R = 640x10° cm 215 em

297 x10°

2nx2.15

360°
1i. y, =2.15sin¢ cm (Table .2.15).'

x30° = 1.128 cm

H. d =
RS=Tg

b 4 - —_
Mercator’s Projection SP=Rdy -

- Principle _ EP=Ro -
This is a cylindrical orthomorphic. projection
designed by Flemish, Mercator and Wright. In this,
a simple right circular cylinder touches the globe
along the equator. All the parallels are of the same
length equal to that of the equitor and the
-meridians are equispaced on the parallels
.(Fig. 2.37). Therefore, the tangential scale | dy be the corresponding linear dista
Increases infinitely toward the pole. To maintain from the equator on projection.
thedpropen{ of orthomorphism, the radial scale is d

made equal to the tangential scale at an oint. . adial s -9

Hence, parallels are variably spaced yorll) the radial scale = R.d¢ u
meridians and the poles can never be represented.  Lenoth of parallel (¢) on globe = ZH/R :ﬂﬂ
The parallels and meridians are represented by Len;th of parallel (¢) on pFOJ'eC“'Onﬂ

Fig. 2.37 Principles ol Mercator’s Proje ;

sets of straight lines intersecting at right angles, 2mR

In Fig. 2.37, let the cylinder ABCD touch the globe = .-, tangential scale = - = 1050
along the equator. The parallel, PQ, is projected as - 2aR 0%
straight line at PM distance away from WE, =secd

D N ”\lll? PR Y2 o P =0 v
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