5.9. PRIMITIVES AND FUNDAMENTAL THEOREMS.

Definition (**Primitive**): Let $f:[a,b] \to \mathbb{R}$ be a given function. A function $F:[a,b] \to \mathbb{R}$ is said to be primitive or antiderivative of f on [a,b] if F is continuous on [a,b], differentiable on (a,b) and $\frac{d}{dx}F(x) = f(x), x \in (a,b)$.

The function F defined by $F(x) = \int_a^x f(t)dt$ ($x \in [a, b]$) is called the indefinite integral of f on [a, b].

For example, $\log_e x$ ($x \in [1, 2]$) is the primitive of $\frac{1}{x}$ on [1, 2].

The integral $\int_a^x \frac{dt}{t}$ ($x \in [1, 2]$) is the indefinite integral of $\frac{1}{t}$ on [1, 2].

Remark: One may be tempted to jump into the conclusions:

- (i) if f is integrable on [a, b] then it has a primitive on [a, b],
- (ii) if f has a primitive on [a, b] then f is integrable on [a, b].

The following two examples show that such conclusions are false.

Example 5.9.1. Let $f:[0, 2] \to \mathbb{R}$ be a function defined by

$$f(x) = 2x, \quad 0 \le x \le 1$$

= $x^2, \quad 1 < x \le 2$

Show that f has no primitive although f is integrable on [0, 2]. Solution: The function f is continuous on [0, 2] except at the point x = 1. Hence f is integrable on [0, 2]. f has a jump discontinuity at x = 1, since $f(1 + 0) \neq f(1 - 0)$. As we know that derivative of a function (assuming its existence) can not have points of jump discontinuity in its domain, it follows that there does not exist a function F on [0, 2] such that F'(x) = f(x), $x \in (0, 2)$. Hence f has no primitive on [0, 2] although it is integrable there. Example 5.9.2. Let $f: [-1, 1] \to \mathbb{R}$ be a function defined by

$$f(x) = 2x \sin \frac{1}{x^3} - \frac{3}{x^2} \cos \frac{1}{x^3}, \quad x \neq 0$$

and

$$f(0)=0.$$

Show that f has primitive in [-1, 1] but $f \notin \mathcal{R}[-1, 1]$.

Solution: Since $\lim_{x\to 0} f(x)$ is infinite, 0 is a point of infinite discontinuing

of f in [-1, 1] and hence f is unbounded on [-1, 1].

Thus f is not integrable on [-1, 1].

If we define a function F on [-1, 1] by

$$F(x) = x^{2} \sin \frac{1}{x^{3}}, \quad x \neq 0$$

$$= 0, \qquad x = 0$$

$$F'(x) = 2x \sin \frac{1}{x^{3}} - \frac{3}{x^{2}} \cos \frac{1}{x^{3}}, \qquad x \neq 0$$

$$= 0, \qquad x = 0$$

$$[E'(0) = \lim_{h \to 0} \frac{F(h) - F(0)}{h} = \lim_{h \to 0} h \sin \frac{1}{h^3} = 0 \text{ as } \sin \frac{1}{h^3} \text{ is bounded in}$$

any deleted neigbourhood of origin].

Thus F is differentiable everywhere on [-1, 1] and F'(x) = f(x), $x \in [-1, 1]$. Therefore F is a primitive of f on [-1, 1] although f is not integrable there.

Note: If F be a primitive of f on [a, b] then for any $c \in \mathbb{R}$, F + cis also a primitive of f on [a, b]. Thus primitive of f, if exists, is not unique.

Theorem 5.9.1.

Let $f:[a, b] \to \mathbb{R}$ be integrable on [a, b] and $F(x) = \int_a^x f(t)dt$, $x \in [a, b]$. Then

- (i) F is continuous on [a, b],
- (ii) F is of bounded variation on [a, b].

Proof. (i) Let c be any point of [a, b]. Then for any $x \in [a, b]$ $(x \ge c \text{ or } x < c)$

$$F(x) - F(c) = \int_{a}^{x} f(t)dt - \int_{a}^{c} f(t)dt = \int_{c}^{x} f(t)dt \dots (1)$$

Since f is R-integrable on [a, b], it is bounded on [a, b]. Hence there exists a positive real number A such that

 $|f(t)| \le A \text{ for } t \in [a, b] \dots (2)$

Then for $x \ge c$, we have from (1)

$$|F(x) - F(c)| = \left| \int_{c}^{x} f(t)dt \right| \le \int_{c}^{x} |f(t)|dt \le A(x - c) \text{ [by (2)]}$$

and for
$$x < c$$
, $|F(x) - F(c)| = \left| \int_{c}^{x} f(t)dt \right| = \left| \int_{x}^{c} f(t)dt \right| \le A(c - x)$ [by (2)]

Hence, $|F(x) - F(c)| \le A |x - c|$ for all $x \in [a, b]$... (3)

Let ε be any positive number. Then for this chosen ε , there exists a positive $\delta = \frac{\varepsilon}{A}$ such that

 $|F(x) - F(c)| < \varepsilon$ whenever $|x - c| < \delta$ [from (3)]

 \Rightarrow F is continuous at c.

Since c is arbitrary point of [a, b], F is continuous on [a, b].

Remark: Since δ is indepedent of c, so we can conclude that F is uniformly continuous on [a, b].

(ii) Let
$$P = \{x_0, x_1, x_2, ..., x_n\} \in \mathcal{P}[a, b]$$
.

For every $r = 1, 2, \dots n$

$$|F(x_r) - F(x_{r-1})| = \left| \int_{x_{r-1}}^{x_r} f(t) dt \right| \le \int_{x_{r-1}}^{x_r} |f(t)| dt < A(x_r - x_{r-1}).$$

Thus V(P, F) =
$$\sum_{r=1}^{n} |F(x_r) - F(x_{r-1})| < A(b-a)$$
 for every P $\in \mathcal{P}[a, b]$

 \Rightarrow Sup{V(P, F) : P $\in \mathcal{P}[a, b]$ } $\leq A(b - a)$

 \Rightarrow total variation of F on [a, b] is bounded above which proves that F is of bounded variation on [a, b]. (See the chapter on bounded variation.)

Theorem 5.9.2. (Indefinite Integral Theorem)

Let $f:[a, b] \to \mathbb{R}$ be continuous on [a, b] and $F(x) = \int_a^x f(t)dt$,

 $x \in [a, b]$. Then F is differentiable on [a, b] and $\frac{d}{dx} F(x) = f(x)$,

Proof. Let $c \in [a, b]$. Since f is continuous at c, for any positive ε , $x \in [a, b].$ there exists a positive δ such that $|f(t) - f(c)| < \frac{\varepsilon}{2}$ when $|t - c| < \delta$ and $t \in [a, b] \dots (1).$

Let h be any real number such that $0 < |h| < \delta$ and $c + h \in [a, b]$. Then

$$F(c + h) - F(c) = \int_{a}^{c+h} f(t)dt - \int_{a}^{c} f(t)dt = \int_{c}^{c+h} f(t)dt$$

$$\Rightarrow \frac{F(c+h) - F(c)}{h} - f(c) = \frac{1}{h} \int_{c}^{c+h} (f(t) - f(c)) dt.$$

If
$$h > 0$$
 then $\left| \frac{F(c+h) - F(c)}{h} - f(c) \right| \le \frac{1}{h} \int_{c}^{c+h} \left| f(t) - f(c) \right| dt \le \frac{\varepsilon}{2} < \varepsilon$

[by (1)]

and if
$$h < 0$$
 then $\left| \frac{F(c+h) - F(c)}{h} - f(c) \right| \le \frac{1}{-h} \int_{c+h}^{c} |f(t) - f(c)| dt$

$$\leq \frac{\varepsilon}{2} < \varepsilon \text{ [by (1)]}$$

Hence for $0 < |h| < \delta$, $c + h \in [a, b]$

$$\left| \frac{F(c+h) - F(c)}{h} - f(c) \right| < \varepsilon \implies \lim_{h \to 0} \frac{F(c+h) - F(c)}{h} = f(c)$$

 \Rightarrow F'(c) exists and = f(c).

As c is any point of [a, b], it is proved that F'(x) exists for $a \in [a, b]$ and F'(x) = f(x), $x \in [a, b]$.

Theorem 5.9.3. (Fundamental Theorem of Integral Calculus) If $f: [a, b] \to \mathbb{R}$ is integrable on [a, b] and φ is a primitive of f on [a, b] i.e. $\varphi'(x) = f(x)$ for all $x \in [a, b]$ then $\int_a^b f(x) dx = \varphi(b) - \varphi(a)$.

Proof. Let $P = \{x_0, x_1, x_2, ..., x_n\}$ be a partition of [a, b] and $I_r = [x_{r-1}, x_r]$ (r = 1, 2, ..., n) be n sub intervals of [a, b]. Since f is integrable on [a, b], it is bounded on [a, b].

Let $M_r = \sup\{f(x) : x \in I_r\}, m_r = \inf\{f(x) : x \in I_r\} \ (r = 1, 2, ..., n).$

Since φ is a primitive of f on [a, b], φ is continuous and differentiable on [a, b] and $\varphi'(x) = f(x)$, $x \in [a, b]$.

Then by Lagrange's Mean Value Theorem applied on φ in $[x_{r-1}, x_r]$ for r = 1, 2, ..., n we have

$$\varphi(x_r) - \varphi(x_{r-1}) = \varphi'(\xi_r) (x_r - x_{r-1}) \text{ for some } \xi_r \in (x_{r-1}, x_r)$$

$$= f(\xi_r) |I_r| (r = 1, 2, ..., n).$$

Since $m_r \le f(\xi_r) \le M_r \ (r = 1, 2, ..., n)$

hence $L(P, f) \le \sum_{r=1}^{n} f(\xi_r) |I_r| \le U(P, f)$

$$\Rightarrow L(P, f) \le \sum_{r=1}^{n} [\varphi(x_r) - \varphi(x_{r-1})] \le U(P, f)$$

$$\Rightarrow$$
 L(P, f) $\leq \varphi(b) - \varphi(a) \leq$ U(P, f).

Taking limit $||P|| \rightarrow 0$ and using Darboux's Theorem we have

$$\int_a^b f(x)dx \le \varphi(b) - \varphi(a) \le \int_a^b f(x)dx.$$

Since f is integrable on [a, b], $\int_a^b f(x)dx = \int_a^b f(x)dx = \int_a^b f(x)dx$

Therefore
$$\int_a^b f(x)dx = \varphi(b) - \varphi(a)$$
.

Remark: Evaluation of $\int_a^b f(x)dx$ in terms of primitive of f on [a, b] is possible only if f is integrable on [a, b] and f has no points of jump discontinuity in [a, b].

Example 5.9.6. Examine whether Fundamental Theorem of Integral Calculus is applicable to evaluate the integral $\int_0^3 f(x)dx$ where f(x) = x[x], $x \in [0, 3].$

Solution: Explicit expression of f is

$$f(x) = 0, \quad 0 \le x < 1$$

= $x, \quad 1 \le x < 2$
= $2x, \quad 2 \le x < 3$
= $9, \quad x = 3$

f has jump discontinuities at x = 1, x = 2, x = 3. If φ is a primitive of f on [0, 3], then $\varphi'(x) = \varphi'(x)$ f on [0, 3] then $\varphi'(x) = f(x)$, $x \in [0, 3] \Rightarrow \varphi'$ has jump discontinuities at x = 1, x = 2 and x = 1. at x = 1, x = 2 and x = 3 which contradicts the well known result that a derived function contradicts a derived function cannot have jump discontinuity in its domain. f has no primitive on [0, 3]. Hence Fundamental Theorem of Integral

Calculus cannot be applied to evaluate $\int_0^3 f(x) dx$.

em of Integral Scanned by CamScanner

5.10. ALTERNATIVE DEFINITION OF RIEMANN INTEGRAL.

Definition: Let $f:[a,b] \to \mathbb{R}$ be a function and $P = \{x_0, x_1, x_2, \dots, x_n\}$..., x_n } be a partition of [a, b].

Let $I_r = [x_{r-1}, x_r]$ and $|I_r| = x_r - x_{r-1}$. If $\xi_r \in I_r$, $\Gamma = \{\xi_1, \xi_2, ..., \xi_r\}$ ξ_n is collection of intermediate points $\xi_r(r=1, 2, ..., n)$. Then the sum $\sum_{r=1}^{n} f(\xi_r) |I_r|$ is a real number depending on P and Γ which is denoted by $S(P, \Gamma, f)$.

S(P, Γ , f) = $\sum_{r=1}^{n} f(\xi_r) |I_r|$ is defined as Riemann sum of f for the partition P of [a, b] and collection Γ of intermediate points ξ_r (r = 1, 2, ..., n) in [a, b]. ξ_r 's (r = 1, 2, ..., n) are also called tags of I_r (r = 1, 2, ..., n).

Note: Γ is a collection and not necessarily a set, since choice of tags may be such that $\xi_1, \xi_2, ..., \xi_n$ are not always distinct.

Definition: A function $f:[a, b] \to \mathbb{R}$ is said to be Riemann Integrable on [a, b] if there exists a real number 'l' such that for every choice of positive number ε there exists a positive number S such that

$$|S(P, \Gamma, f) - l| < \varepsilon$$

for all partitions $P \in \mathcal{P}[a, b]$ with $||P|| < \delta$, where $S(P, \Gamma, f)$ is the Riemann sum of f for a partition P of [a, b] and for any choice of intermediate points of [a, b] included in Γ .

 $S(P, \Gamma, f)$ exists Thus f is Riemann Integrable on [a, b] if $\lim_{\|P\| \to 0}$ (finitely)

and then $l = \int_a^b f(x)dx = \lim_{\|P\| \to 0} S(P, \Gamma, f)$.

Remark: For any real number given by ||P|| there exist infinitely many partitions P of [a, b] and hence $S(P, \Gamma, f)$ is not a single valued function of ||P||. So the above concept of limit is not covered by the limit defined in ordinary sense.

In fact S(, f) is a real valued function whose domain is the set

 $\bigcup\{(P,\Gamma):\Gamma \text{ corresponds to given }P\}.$ $P \in \mathcal{P}[a,b]$

The following theorem establishes the equivalence of two **definitions** of $\int_a^b f(x)dx$.

Theorem 5.10.1.

If $f:[a,b] \to \mathbb{R}$ be a bounded function such that

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(x)dx \left(= \int_{a}^{b} f(x)dx \right)$$

then $\lim_{\|P\|\to 0} S(P, \Gamma, f)$ exists and $= \int_a^b f(x)dx$ and conversely.

where $S(P, \Gamma, f)$ is the Riemann sum of f corresponding to partition P of [a, b] and Γ , the collection of intermediate points of [a, b] corresponding to P.

Proof. Let
$$\int_a^b f(x)dx = \int_a^b f(x)dx \left(= \int_a^b f(x)dx \right) \dots (1)$$

Let $P = \{x_0, x_1, x_2, \dots, x_n\}$ be any partition of [a, b],

 $I_r = [x_{r-1}, x_r]$ and $|I_r| = x_r - x_{r-1}$ (r = 1, 2, ..., n).

Let $\Gamma = \{ \xi_1, \xi_2, ..., \xi_n \}$ where $\xi_r \in I_r (r = 1, 2, ..., n)$.

Riemann sum function for f and $P \in \mathcal{P}[a, b]$ is

$$S(P, \Gamma, f) = \sum_{r=1}^{n} f(\xi_r) |I_r|.$$

Let $M_r = \sup\{f(x) : x \in I_r\}, m_r = \inf\{f(x) : x \in I_r\} \ (r = 1, 2, ..., n).$

Now $m_r \le f(\xi_r) \le M_r \ (r = 1, 2, ... n)$

 \Rightarrow L(P, f) \leq S(P, Γ , f) \leq U(P, f) for every P \in P[a, b].

By Darboux's Theorem, taking limit $||P|| \rightarrow 0$ we have

$$\underline{\int}_{a}^{b} f(x) dx = \lim_{\|\mathbf{P}\| \to 0} \mathbf{L}(\mathbf{P}, f) \le \lim_{\|\mathbf{P}\| \to 0} \mathbf{S}(\mathbf{P}, \Gamma, f) \le \lim_{\|\mathbf{P}\| \to 0} \mathbf{U}(\mathbf{P}, f) = \overline{\int}_{a}^{b} f(x) dx$$

$$\Rightarrow \int_{a}^{b} f(x)dx \le \lim_{\|P\| \to 0} S(P, \Gamma, f) \le \int_{a}^{b} f(x)dx \quad \text{(by (1))}$$

$$\Rightarrow \lim_{\|P\| \to 0} S(P, \Gamma, f) \text{ exists and } = \int_a^b f(x) dx.$$

Conversely, let $\lim_{\|P\|\to 0} S(P, \Gamma, f)$ exist and = l.

Let $P = \{x_0, x_1, ..., x_n\} \in \mathcal{P}[a, b], I_r = [x_{r-1}, x_r],$

 $|I_r| = x_r - x_{r-1}$; M_r and m_r are respectively Supremum and Infimul of f on I_r (r = 1, 2, ..., n).

From definition of Supremum, for any chosen positive number there exists a point $\xi'_r \in I_r$ such that

$$M_r - \frac{\varepsilon}{b-a} < f(\xi_r') \le M_r$$
 $(r = 1, 2, ..., n)$

$$\Rightarrow 0 \le M_r - f(\xi_r') < \frac{\varepsilon}{b-a} \qquad (r = 1, 2, ..., n).$$

If $\Gamma' = \{\xi'_1, \xi'_2, ..., \xi'_n\}$ then we have

$$0 \le \sum_{r=1}^{n} [\mathbf{M}_r - f(\xi_r')] |\mathbf{I}_r| < \varepsilon$$

$$\Rightarrow 0 \le U(P, f) - S(P, \Gamma', f) < \varepsilon. \qquad ... (2)$$

Taking limit $||P|| \rightarrow 0$ in the inequality (2) and using Darboux's theorem we have

$$0 \le \int_a^b f(x) dx - l \le \varepsilon.$$

Since ε is arbitrary, we have $\int_a^b f(x)dx = l$.

From definition of Infimum, for any chosen positive number ε there exists a point $\xi_r'' \in I_r$ such that

$$m_r \le f(\xi_r'') < m_r + \frac{\varepsilon}{b-a}$$
 $(r = 1, 2, ..., n)$

$$\Rightarrow 0 \le f(\xi_r'') - m_r < \frac{\varepsilon}{b-a} \qquad (r = 1, 2, ..., n)$$

$$\Rightarrow 0 \le S(P, \Gamma'', f) - L(P, f) < \varepsilon \dots (3)$$

where
$$\Gamma'' = \{\xi_1'', \xi_2'', ..., \xi_n''\}.$$

Taking limit $||P|| \rightarrow 0$ in the equality (3) and using Darboux's theorem we have

$$0 \le l - \int_{\underline{a}}^{b} f(x) dx \le \varepsilon.$$

Since ε is arbitrary, $\int_a^b f(x)dx = l$.

Hence it is proved that $\int_a^b f(x)dx = \int_a^b f(x)dx$.

This establishes equivalence of two definitions of Riemann Integral.

Note: If $f \in \mathcal{R}[a, b]$ then $\lim_{\|P\| \to 0} S(P, \Gamma, f)$ exists uniquely.

Theorem 5.10.2.

Let $f:[a,b] \to \mathbb{R}$ be a bounded function and $\{P_n\}_n$ be a sequence of powers. of partitions of [a, b] such that the sequence $\{\|P_n\|\}_n$ converges to 0. Then f: 0. Then f is integrable on [a, b] if and only if $\lim_{n\to\infty} S(P_n, \Gamma, f)$ exists

and is equal to $\int_a^b f(x)dx$, where $S(P_n, \Gamma, f)$ is the Riemann sum of f for D $f_{or} P_n \in \mathcal{P}[a, b]$ and collection Γ of intermediate points of [a, b]corresponding to P.

Proof. Let f be integrable on [a, b]. Then for any chosen positive number ε there exists a positive number δ such that

$$U(P, f) - L(P, f) < \varepsilon$$

for every partition P of [a, b] satisfying $||P|| < \delta$.

Since $\{P_n\}_n$ is a sequence of partitions of [a, b] such that the sequence $\{||P_n||\}_n$ converges to 0, so there exists a natural number $[depending on \delta]$ such that $||P_n|| < \delta$ for all $n \ge m$.

So $U(P_n, f) - L(P_n, f) < \varepsilon$ for all $n \ge m$.

For every $P_n \in \mathcal{P}[a, b]$ we have

$$L(P_n, f) \le S(P_n, \Gamma, f) \le U(P_n, f)$$
 ... (1)

where $S(P_n, \Gamma, f)$ is the Riemann sum function of f.

Since f is integrable on [a, b], for every $P_n \in \mathcal{P}[a, b]$

$$L(P_n, f) \le \int_a^b f(x)dx \le U(P_n, f)$$
 ... (2)

From (1) and (2), we have

$$\left| S(P_n, \Gamma, f) - \int_a^b f(x) dx \right| \le U(P_n, f) - L(P_n, f) < \varepsilon \text{ for all } n \ge m$$

$$\Rightarrow \lim_{n \to \infty} S(P_n, \Gamma, f)$$
 exists and $= \int_a^b f(x) dx$.

Conversely, let $\lim_{n\to\infty} S(P_n, \Gamma, f)$ exists and = l

for every partition P_n of [a, b] such that $||P_n|| \to 0$ as $n \to \infty$.

Then for any positive number ε there exists a natural number m such that

$$\left| S(P_n, \Gamma, f) - l \right| < \frac{\varepsilon}{4} \text{ for all } n \ge m.$$

Let $||P_m|| = \delta' > 0$. Since $\lim_{n \to \infty} ||P_n|| = 0$, there exists a natural number k such that $||P_n|| < \delta'$ for all $n \ge k$. Let $q = \max\{m, k\}$.

Then
$$|S(P_n, \Gamma, f) - l| < \frac{\varepsilon}{4}$$
 for all $n \ge q$.

This implies that $|S(P_n, \Gamma, f) - l| < \frac{\varepsilon}{4}$ for all partitions P_n of [a, b] satisfying $||P_n|| < \delta'$.

Let $P' \in \mathcal{P}[a, b]$ such that $||P'|| < \delta'$.

Let P' =
$$\{x_0, x_1, ..., x_n\}$$
 and $I_r = [x_{r-1}, x_r], |I_r| = x_r - x_{r-1}$
 $(r = 1, 2, ..., n)$

Let
$$M_r = \sup\{f(x) : x \in I_r\}, m_r = \inf\{f(x) : x \in I_r\}$$

$$(r = 1, 2, ..., n)$$

THITEGRAL

From properties of Supremum and Infimum of a bounded set, for the chosen ε , there exist points α_r , β_r in I_r such that

$$M_r - \frac{\mathcal{E}}{4(b-a)} < f(\alpha_r) \le M_r$$

and
$$m_r \le f(\beta_r) < m_r + \frac{\mathcal{E}}{4(b-a)}$$
 ... (3) $(r = 1, 2, ... n)$.

If
$$\Gamma_1 = \{ \alpha_1, \alpha_2, ..., \alpha_n \}, \Gamma_2 = \{ \beta_1, \beta_2, ..., \beta_n \}$$
 we have from (3)

$$U(P', f) - \frac{\mathcal{E}}{4} < S(P', \Gamma_1, f) \le U(P', f)$$

and
$$L(P', f) \le S(P', \Gamma_2, f) < L(P', f) + \frac{\varepsilon}{4}$$

Since $l - \frac{\mathcal{E}}{4} < S(P_n, \Gamma, f) < l + \frac{\mathcal{E}}{4}$ for any choice of intermediate points in Γ and $||P_n|| < \delta'$, we have therefore

$$U(P', f) - \frac{\varepsilon}{4} < l + \frac{\varepsilon}{4} \text{ and } L(P', f) + \frac{\varepsilon}{4} > l - \frac{\varepsilon}{4}$$

$$\Rightarrow l - \frac{\varepsilon}{2} < L(P', f) \le U(P', f) < l + \frac{\varepsilon}{2} \dots (4)$$

 \Rightarrow U(P', f) - L(P', f) < ε for any partition P' of [a, b] satisfying $|\mathbb{P}'|$ < δ' , a sufficient condition of integrability.

Hence f is integrable on [a, b].

Also $L(P', f) \leq \int_{a}^{b} f(x)dx \leq U(P', f)$, so using(4),

$$l - \frac{\varepsilon}{2} < \int_{a}^{b} f(x) dx < l + \frac{\varepsilon}{2}$$

 $\Rightarrow \left| \int_{a}^{b} f(x) dx - l \right| < \frac{\mathcal{E}}{2}$ which holds for every positive \mathcal{E} .

Hence $l = \int_a^b f(x) dx$.

This completes the proof.

Note. 1. If $\lim_{n\to\infty} S(P_n, \Gamma_1, f) = l_1$ and $\lim_{n\to\infty} S(P_n, \Gamma_2, f) = l_2$, for different choices of intermediate points in Γ_1 and Γ_2 and $l_1 \neq l_2$ then $\lim_{n\to\infty} S(P_n, \Gamma, f)$ does not exist and hence f is not integrable on [a, b].

2. If $P_n = \{x_0, x_1, ..., x_n\} \in \mathcal{P}[a, b]$, in particular we can take the points of P_n equispaced i.e., $x_1 - x_0 = x_2 - x_1 = \dots = x_n - x_{n-1}$ as $n \to \infty$. Then if f_n Then if for any choice of intermediate points ξ_1 , ξ_2 , ..., ξ_n in Γ

 $\lim_{n\to\infty} S(P_n, \Gamma, f) = \lim_{n\to\infty} \frac{b-a}{n} \sum_{i=1}^n f(\xi_i) \text{ exists and is equal to } l \text{ then } f$