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P haSe Rule

3.1 Introduction and Definitions

The various conditions of equilibri
quilibriu E
'of phases, the number of componzn:;e;:dcetl;n plcljasesg S
: 3 € degrec

variance), can be correlated with one another with thes Eilf;‘cicfl‘ozl (or thrri

. €
gj‘le, known as the -phflse rule. This rule was deduced theoretically bgy I}e{;
y 1fti)bs. Bcgorc pl_roccedmg with the deduction of the rule, it is HeCcssary‘ t(;_

efine and explain the terms involved, viz., ph

lved, viz., phase :

of freedom. , phase, component and degrees

PHASE ' i i

_A phase is defined as any homogeneous and physically distinct part of a
system which is separated from other parts of the system by deﬁnire bounding
surfe aced: Thc term homogencous means that the system has identical physical
properties and chemical composition throughout the whole of the system.

In general, we have:

(i) For gaseous system: Only one phase is possible since gases are com-
pletely miscible with one another in all proportions.

(ii) For liguid systen. The number of phases is equal to the number of
layers present in the system. For completely miscible liquids, the ‘number
of phases is equal to one. ' |

(i) For solid system: ‘In general, every solid consiitutes a single phase.
cxcept when a solid solution is formed. Thus the number of phases in the

] - ._._.-——.'—'—_"‘__"-__——
solid s_){ggg_szchual o the number of solids present. In solid solution, the

number of phases is equal to one. Each polymorphic form and allotropic

modification constitutes a separate phase
__’/—". '

NUMBER OF COMPONENTS

It is the smallest number of independent chemical constituents by means of
which the composition of each and every phase can be expressed. The inde-
pendent chemical constituent is the one whose concentration can be varied
independent of other constituents of the system. Some typical examples are.

given below. . '
(i) One-component system: The water system 1S a typical example of one-

component system. We can have the following equilibria between the

different phases of water;
solid water (ice) = liquid water
solid water = water vapour

liquid water = water vapour
solid water = liqnid water ¥ water vapour )
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' 90 .A TEXTBOOK OF PHYSICAL CHEMISTRY

The composition of any one phase (solid, Jiquid or vapour) can be ex-

ssed in terms of the single constituent water and hence the number of

pre
specification

components is one. The variable could be either H; or O, since
of one fixes the other through. the formula H,O. However, this choice is
never considered since H, or O, does not exist as the individual constituent
in the above equilibrium. .

(ii) Two-component system: The typical example of a two-component
system is the salt hydrate system such as sodium sulphate-water, copper
sulphate-water, etc, In Na;SO4-H,0 system, the various phases that may
occur are Na,SOy, Na,SO04- 7H,0, Na,S0s- 10H20, an aqueous solution of
Na,SQ4, water present as ice, liquid and vapour. The composition of any
of the above phases can be stated in terms of the two constituents, namely,
sodium sulphate and water: - :

Na,S0s : Na,S04+0H;0

Na,SO04-7TH,0  :Na,SO4+7H,0 e
- Na,504-10 H,0 : NazSO4+ 10H20 Ly

4 N32S04 (aq) : Nﬂ.gSOd“l‘x HIO ] : : ! B2
H,0 (s), H,0 (1), H,0 (g) : 0Na,SO4+H,0 - o
It can be seen that the composition of some of the phases can be repre-
sented by only one component wh_i]e the others nccess_arily require two
components. Since two components are the smallest number by which the
composition of all the phases can be defined, thé number of components in
sodium sulphate-water systcm is two. R S
Another example is the equilibrium between CaCOs(s), CaO(s) and
'CO2 (g) as represented by the equation ; S
& CaCOs(s) = CaO(s)+CO4(g)
Here the number of phases are. three, ‘viz., solid CaCO,, solid CaO- and
‘gaseous CO,. The number of components in the above system is two since

" two species out of the three are sufficient to express the composition of all
the three phases. It is immaterial which of the two are selected for this

purpose. For example: o |
~ (a) If CaO and CO; are chosen, then _
: i g CaCO; _(s') : Ca0+CO,
CaO (s) :CaO0+0CO;
(b) If CaCO; and CaO are chosen, then '

CaCO; (s) : CaCO;+0 CaO
CaO (s) :0CaCO;3+CaO
CO; (g) :CaCO;—CaO
"~ and so on. : F il _ :
" Thus it is the number and not the nature that is important for determining -
~ the components of the system. e g -
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PHASE RULE " 91

Another example, which makes a clear distinction between the one-
component system and the two-component system, is the dissociation of
ammonium chloride: '

NH4CI (s) = NH; (g)+HCI (g)

This system has two phases, viz., solid NH4Cl and gaseous phase containing
ammonia and hydrochloric acid. If the dissociation is carried out in vacuum,

. then the number of ¢components of the system is one. This is due to the fact

that in the gaseous phase both HCI and NHj are always present in equal
amounts and thus its composition can be represented by NH4Cl (= x NH;3+
x HCl). But if the dissociation is carried out in the presence of arbitrary
amounts of NH; or/and HCI, then the number of components of the system
becomes two: ' Ty

Solid NH,Cl : NH;-+HCI
Gaseous phase : x NH;4p HCI

DEGREES OF FREEDOM

The degree of freedom or variance of the system is the: minimum number
of independent variables such as temperature, pressure and concentration,
that must be ascertained so that a given system in equilibrium is completely
defined. For an illustration, we cite an.example of water system. If only one
phase is present (solid, liquid or gas), then we have to describe values of
at least two parameters, uamely, temperature aud pressure, in order to
define the system. For example, we can have liquid water under different.
conditions of temperature and pressure. Thus the water system has two
degrees of freedom or it is bivariant. Now consider two phases in equlllbnum,
for example, solid and liquid water, i.e.

~ solid water = liquid water

It is well known that the temperature at which a solid melts depends upon
external pressure. Thus if the value of one of the variables is fixed, the other
will automatically have a definite value. The usual melting point of 0°C is
referred to one atm external pressure. In order to describe the above equilib-
rium. completely, we need to specify only one variable—either temperature
or pressure; hence the system has one degree of freedom, i.e., it is an
univariant system.

Alternatively, the degree of freedom of the system may be deﬁned as rhe :

" number of factors, such as temperature, pressure and concentration, which

'"iE«JJ m

can be varied independently without altering the number of phases. For a-
single phase’ system, both temperature and pressure can be varied indepen-
dently of each other and thus the system is.bivariant. For two phases in
equilibrium, only one variable can be varied as the other one will auto-
matically have a fixed value and thus the system is univariant. | .
' Consider now the situation at the triple point of water where all the three
phases aré in equilibrium with each other. This equilibrium is achieved at

g:\\'&é—) r“\i}*—""r’ L_ % . . . ‘¥
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92 A TEXTBOOK OF PHYSICAL CHEMISTRY
a temperature of 0.009 8°C and a
the values of these variables, conver
two-phase or

so long as w
system has z

pressure of 4.58 mmHg. Any change i
ts the three-phase system into either
_Onc'PhaSC system. Thus, none of the variables can be changed
€ want to have all the three phases in equilibrium. Thus thé
ero degree of freedom, or it is nonvarjant (or invariant).

3.2 Derivation of Phase Rule

Phase ru!c is a general rule which is applicable to all types of reactive and
qonreact:v? systems. In a nonreactive system, we simply have the distriby-
tion of various components in different phases without any complicationg
such as the chemical reaction between the components. We derive the rule,

first, for the nonreactive system and then show how the same rule can be
used for the reactive system. ' |

NONREACT!VE SYSTEM

Consider a heterogeneous system of P phases at ‘equilibrium containing in
all C components. Let us start with the assumption that all the C components
are present in all P phases. The system at equilibrium can be completely
described if we know the values of the variables listed in Table 3.2.1.

TABLE 3.2.1 THE VALUES OF THE VARIABLES TO BE KNOWN TO DEFINE A GIVEN
SysTEM COMPLETELY ' A -

Variables ' Foand s el ~ Number =~ -

ei) Temperature of the system ; - : ' 1
(ii) Pressure of the system . ] e
(iij) Concentration (or mole fraction) of each and every component
in all the P phases. For each phase, we will have to specify the
~ values of C concentration terms and thus for P phases, we will
have to specify in all PC values * g PC

Sy —

Total number of variables that need to be specified . B e

Values of these variables can be obtained by solving the equations which
are applicable when the system is at equilibrium. There are two types of
equations which are available (Table 3.2.2). e
Mathematically, we know that the number of variables that can be obtalr!-
ed from a set of equations is equal to the number of equations. Thus if
there are as many equations as there are variables, then the tcmperature,
pressure and composition of the whole system in equilibrium can be deter-
mined. Such a system, as stated earlier, is the nonvariant system. If the
number of variables exceeds the number of equations by one, then the
equilibrium of the system cannot be determined until one of Ehc Yanable;
is arbitrarily chosen. Such a system is called monovariant (or umv{mant) an |
~ has one degree of freedom. Thus we see that the excess of variables over - |
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PHASE RULE

TA[_;LE 3.2.2 TYPEs OF EQUATIONS WHICH ARE AVAILABLE

Equations ; Number

(i) Condition of sum of the mole fractions in any phas$ being
equal to one, i.e.,

x(l|J+x(§}+...+x(‘!) =1
x(2)+xm+...+x(§’ =1

{P)-I-.I(PL}- +x(P) =1

There will be as many equations as the number of phases. . o

Thus their total number will be P : P
(ii) Thermodynamic condition of phése equilibria:

According to this, the species will be distributed in such a

manner that value of G of the system at equilibrium is

minimum. The condition for this is that -the chemical

potential of any component will have the same value in all
the P phases, i.e.,

u® =y = O o

o P-(f)
e = u@ = )P = = )
' TR
-P-(P o (%) = F(?é) & . = F‘{c) _
For each component, we will have (P—1) equations and thus :
for C components, the number of equations will be C(P—1) i C(P-1) .
Total number of equations that are available . - P+C(P-))

~equations, which is called t_he variance F of the system, is given as

Vari __ ( Total number of variables) (Total number of equatlons ) N
arance = \ hat need to be specified that are available

Thus, from Tables 3.2. 1 and 3.2.2, we have
= (PCH-2)—{P+C(P-1)}
or F =C—P+2 :
or . F4+P=C+2 | 3.2.1)
Equation 3.2.1 is the phasc rule which connects the number of phases and
components with the variance of the system. Let us verify the rule by
calculating the variance of a one-component system: -
(i) One phase only: = e P=1, F-l-1+2——2
(ii) Two phases in equilibrium: P=2F=1-242=1
(iii) Three phases in equilibrium: P=3F=1-34+2=0 ‘
Thus, we see that the calculated degrees of freedom agree with experi-
‘mentally observed values of the one-component water system.
The condition that all the components must be present in every phase, '
which has been used above in deriving the phase rule, is not altogether
essential..The rule is applicable even if any component is missing in any of
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the phases. Say, for example, the component number 1 is missing from the
phase number 1. We can once again derive the phase rule by following the
procedure described earlier. Tables 3.2.3 and 3.2.4 describe the number of

variables and equations for the present case

TABLE 3.2.3 VALUES OF VARIABLES TO BE KNOWN To DEFINE A GIVHN
SysTeM COMPLETELY

Variables Number

(i) Temperature : : e .
i = : . * 1

- (i1) Pressure
~ (i) Concentration of components in different phases

For the first phase, (C—1) concentration terms and : :

for the remaining (P—1) phases, C terms for each phase (C=1+C(P-1)

(C-D+C(P—1)+2
= CP+1 '

Total number of variables that need to be specified.

- TanLE 3.2.4 TYPES OF EQUATIONS AVAILABLE

Equations " Number .

(i)

(i) Condlnun of mole fraction:- . e
3 (l)+xfl)+ (U & : :
@D x @t L ? wdst

---------------------------------------

-There wul agam be in all P equations
Condition of thermodynamic cqu1]1br|um
For'the componentl S e
s e WP R e e )
For other combonc'nt_s

8y =3 ST
il Mt oAl

U NEC S e e T CEINP)

2) equations for the componcm

" There will be (P—
d to others as it is

number ‘1, onc less as compare

absent in the phase number §i =l ] '
e oA TR
Total number of equations that are available P-|—(P—2)+(C—1)(P—l)
' = {P+C (P-1 )}-1

_Varlance of the system ( of variables

P

From 'I‘ablcs 3.2.3and 3.2. 4, we have . .
" [Total number) (Total number of )
equations
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- (i) Neglecting all Dissociations: There are two constituents, no chemical
~ reaction, and no restricting equation. Hence

- as

3
= ElITDUALCAN

A TEAIBOOK OF PHYSICAL CHEMISTRY

3.3 Some Typical Examples to Compute the Number of Components

We have carlier defined the number of componeénts as the minimum number
of independent chemical constituents required to express the composition of
each and every phase of a system. This definition is completely in harmony

with the definitions given below for the reactive and the nonreactive systems,

For nonreactive system: Number of components = Number of
: constituents

For reactive system: Number of components = (Number of constituents)
¥ - ' —(Number of chemical
reactions)
—(Number of restricting
- conditions)
~ Let us illustrate the above consistency with the help of a few typical
examples. : | 2 : '

SODIUM SULPHATE—WATER SYSTEM e

As stated earlier, it is a two-component system. It can be shown that so
long as no precipitate is formed by virtue of a reaction between salt and
water, the number of components is always two no matter what else is

~ assumed to take place in the ‘solution. We consider below four typical

assumptions regarding the nature of the system.

7

C'=C-r—-Z=2—0-0=2

(ii) Complete Dissociatibn of the Salt: The total number of constituents

* present in the solution are three: Na*, SO? and H,0. Since thére is one

I

restricting condition: ' e
| XN+ = 2 Xs0]~ ' |

we have |
C'=C=r—Z=3-0-1=2

(iii) Partial D’x’s&oci&n’on of the Salt: The dissoci_atibn may be represented

'Na,SOs = 2Na*+S02- .

’ { X ] % : E, =
Now the system possesses four constituents, namely, Na,SO4, Na®, SO‘.

XNat = 2 XSQ?‘"

hvs,-we heve .

) Pt = C—Z—r =4-1-1=2

AS N B

Scanned by CamScanner



PHASE RULE ; 99

(iv) Dissociation of Water also:  We have the following two equilibrium
reactions:

Na;S04 = 2 Na++S02-

H,0 = H*+OH"
The different constituents are Na,SO4, Na™, SO?", H,0, H* and OH-, a
tota] of six. There are two reactions and two restricting conditions :

' Xnat = 2 X503~

Xgt = Xon—

Thus _ ;
C=C-Z-r=6-2=2=2

SobIuM DIHYDROGEN PHOSPHATE—WATER SYSTEM

- It can be shown that this system is a two-component system irrespective of
whatever chemical changes may be con31dered in the solution except that
no precipitate is formed.

(i) Neglecting all Dissociations: There are two constituents, no chemical
. reaction and no restricting equation. Hence

C'=C=-Z—-r=2-0-0=2"

(ii) Single Dissociation of the Salt: We may represent the dissociation as
| NaH,PO; - Na*-+H,PO; - )
There are four constituents (NaH,PO4, H,O, Na* and H,POy), one cheml-
cal reaction and one restnctmg equation:
| XNat = Xy,po;
Hence _
. C'=C-Z-r=4-1-1=2

(iii) Multiple Dissociation of the Salt: The multistep dissociation may be
represented as .
NaH,PO4 = Nat+H,PO;
- H,POr = H++HPOZ~ |
HPO? = H++PO}™ = :
There are seven constituents, NaH,POy, Sa*‘, H,PO;, H*, HPO?", PO}~
and H;0. ' ' :

‘Number of chemical reactions = 3
_Number of independent restricting equations = 2:

. XNat = xPoi" + xH'PO}" + tz'po‘;'
r“-ﬂ.\ -\ £ ) . .

: \MERA & il -aute. .7 8

M| ]E/]»L‘,ﬁ’
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Thus

(iv) Dissociation '

O,[ Water also: Besi . ;
wen q eside: v . i "
(iii), we also have ides the 41)50&4“011 given in part

| H,0 = H+*+OH-
There are total cight consti
ght constit ¢ . 5 - .
Poj“, OH- and H.0. ituents, NaH,P0., Nat, H,PO;, H¥, HPO;"‘

Number of chemical reactions = 4
Number of restricting equations = 2 :

XNat = xpoi— -|—pr0§— {-_(Hzpor

il 2 xPoi“f'xupoi‘ “+XoHu~

Thus
C'=C-Z-r =__;- 8—-4—-2=2

ALUMI‘bflUM CHLORIDE—WATER SYSTEM -
In th]S case, AICl; combines with water according to the equation:

AlCl;+3H,;0 = AI(OH)3+3HC1
Some of the AI(OH); i is prempxtatcd out. The dissociation of the -various
specics will be as follows _ :
AICL = A13++3C1-
 H,0 = H*+O0H"
Al(OH); = AP +30H"
HCl & H++CI"

Total numbcr of constituents = 8:
AICIg, H,0, Al(OH);, HCl A13+ Cl‘ H*’ and OH‘

- 4 _
has prcc1pltated out, ther
the electrical neutra

Number of chcmxcal reactions
Since some of the Al(OH);
ing cquatlon namely, that expressing

3 XA13+ -+ xpt+ = XoH™ + Xa—

4-1=23.
f AICl; and that of

e is only one restrict-
lity of the solution

Thus the number of components = 8- :
HClI, we will have

If we assume complete dlsqouanon )
C=6r=2andZ=1

¢ =C—-Z-r=6-1-2=

—~
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PHASE RULE 101

PROBLEM 3.3.1 Show that an aqueous system containing K+, Nat and CI- is a threc-
component system whereas K*, Nat, CI- and Br~ is a four-component system. What

are the number of components if thc salts are present in equal amounts?

(a) K+, Na+, CI- and H,0 system: In th1s case, we have
Number of reactions, r = 3:

H,0 = H*-«!—OH‘
KCl == K+4CI™
. NaCl = Na+4+CI™

‘Number of constituents, C = 8:
H.O, KCl, NaCl, H*, OH-, K+, CI™ and Na+".

i

Number of restricting equations, Z = 2:
(i) Electrical neutrality

Xpat+ + X+ F Xt = Xq— + xoﬁ—
(ii) Water dissociation- ' |
*pt = Xou—
Hence
Number of components, C* = C—r—2 = §—3-2=3

If the salts are present in equal amounts, then one more restricting equation
exists, i.e.,

XNat = X+
. Hence, here
Number of components, C’ = C—=r—2Z = §—3-3 = _
Alternatively, leaving KCI and NaCl on the basis that they are strong electrolytes,

we have
Number of constituents, C = 6:

H,0, H*, OH™, Na*, K+, CI™
Number of reactions, r = 1:
H.,O = H*4+OH~™
~ Number of restricting equations, Z = 2:
Xg+ = Xgp—
XNat++Xg+ = Xc1- -|
Hence '-
Number of components, C’ = C—r—Z = 6—1—2 =

.If the salts are present in equal amounts, then one more restricting equation
exists, i.e.,

Xygt = Xp+ ' | ' }
Hence, here
B Number of components, ¢’ = C—r—2Z = 6—1-3 = 2

(b) K+, Na¥, Cl5Br- andH,0Q system:
Numbcr of rcacnons = i

In this case, we have

L ARl B e

n - = =Y

I—"/ \‘:\—"/. ._‘3-_:_' _ 8 = _"‘_ e M‘"'_ ;-__ _.i_-
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H,0 = H+40H-
KCl = K+4Cl™
NaBr = Na++4Br~
NaCl & Nat+4-ClI—
; KBr = K+4Br~
Nu_mber of constituents, C = 11
H,0, H+ OH“' KCl, K+, CI7, NaBr, Na+ Br-, NaCl and KBr
. Number of restricting equations, Z = 2:
(® Flcctncal neutrahty -
; Na.+ 3 xlc"‘ + "'H+ = Xc1~ + xBl' + on—
(ii) Water d1ssoc1at10n
A bu_
Hence |

Number of components, ¢’ = C—r—Z = 11— 5-2=4 e

If the salts are present in equal amounts, then We have three mdependent restrlctmg

equations:
;- FNat S It
Xa- = Xpe—
Xy+ = Xou—
Hence

Number of components, C' = C—r—Z = 11— 523 = 3¢

Altcrnatwcly. leaving KClI, NaBr, NaCl and KBr as lhey are strong electrolytes we

have: ’
Number of const:tuents, €=

.0, HY, OH-, Nat, K'" Cl" and Br

Number of reactions, F=1:

'3 H,0 = H+*4+OH™

Number of restri.cﬁng conditions, Z = 2: TR
- X+ = Xop—

Xjat+ + Xt = Xa1- F Xpe—

Hence :

Number of components, C' = C—r—Z = T—1-2 =4 i,
If the salts are present in equal amounts, then we have three mdependent restricting
~ equations: ; ; A
| XNat = Xgt+
Xc— = Xgr—
Xy+ = Xop—

jn__a_')one:nts, CF=C—r=Z=7=1-3=3
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PROBLEM 3.3.2 Show that NH.;CI(S) —NH,(g)—HCI(g) system in which pyyy, = PHCI
is a one-component system whereas when py;r, = Py i & two-component SYSIE/L:

(2) NH,Cl(s)-~NH;(g)—HCI(g) when Pniy = PHCL . The condition of PNH3 Pgci
would arise only when the gases are obtained by the sublimation of NH,CI(s). Thus, we
have

Number of reactions, r = 1

NH‘CI(S) 2= NH:.(g)—}-HCl(g)

Number of constituents, C = 3: : 7
: ~ NH,CI(s), NHy(g) and HCI(g)
Number of restricting equations, Z = 1:
Pnw; = PHOL
Hence :
Number of components, ¢’ = C—Z—r = 3—1—1 = 1.
(b) NH,Cl(s)—NH;(g)—HCI(g) when pyy, 7 PrCI *  Here, we have
Number of reactions, r = 1 ‘
Number of constituents, C = 3
Number of restricting equatlons, Z=0

Hence
Number of components, C'=C=Z—r=3-0—-1=2

PROBLEM 3.3.3 Detcrmmc the number of components in a system containing
NH,CI(s), NH; (ag), Cl~(aq), H,O(), H;0*(aq), - H:0(g), NHa(s). OH(aq), and
NH,0H(aq). ; T :

We have :

Number of constituents, C = 9.
Number of equilibrium reactions, r = 5:

NH,CI(s) = NH+(aq) 4+Cl~(aq)
NH; (aq)+2H.0 = NH,0H(aq)+H:0*(aq)
NH,(g)+H,0(l) = NH;0H(aq)
2H,0(l) = H,;0*(aq)+OH(aq)
H,0(l) = H,0(g)
Number of restricting conditions, Z = 1:
*Nu + X0t = Xo- + xop- (condition of eloclroneutrality).

Hence - _
Number of components, C'=C- r-—Z 9-—5—1 = 3

PROBLEH 334 Conmder a homOgencous mixture of four ideal gases capable of
undergomg the reaction :
3 \FIA]_'{"V;AQ = VaAa""‘J‘A‘
Determine the components if we start with (a) arbitrary amounts of A, - and A, only,
(b) arbitrary amounts ofall the four gases,"and (c) v, moles of A, and v, molcs of A,
_only.

(a) Number of constituents, C = 4:
. _ Ay, .‘_k,, Ajand A,
Se T Number of reactinns, r = 1
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104 A TEXTBOOK OF PHYSICAL CHEMISTRY

Number of restrictions, Z = 1:
[Aa] : [!\g] HEHE T/

Hence
Number of components, C' = C—r=2Z = 4—-1—1 =2

(b) Number of constituents, C = 4
Number of reactions, r = ]
Number of restrictions, Z = 0
Number of components, ¢’ = C—r—Z = 4—1—0=3
(c) Number of constituents, C = 4 ’
Number of reactions, r , =1
Number of restrictions, Z2 = 2
[A]] i [Ag] M TR Y
and [As]:[Ad: tvaiwe

Hence
Number of components, C' = C—r—Z = 4—-1-2 =1

REVISIONARY PROBLEMS

3.1 (a) Explain with suitable examples the terms involved in the phase rule

F4+P=C+2
ve and nonreactive systems?

(b) What do you understand by the reacti
applicable to a nonreactive system.

© 3.2 (a) Derive the expression of phase rule as
e remains unchanged even if one of the

(b) Prove that the expression of phase rul
components is missing in some of the phases
3.3 (a) What is the difference between the number
components of a given system? .
(b) Show that for the reactive systems, the form of the phase rule remains unaltered
provided we define the number of components as ' -

C' =C—r—2Z ,

present at equilibrium.
of constituents and the number of

where C is the number of const'it_uents present, r is the number of independent

reactions, and Z is the number of independent restricting equations.

' TRY YOURSELF PROBLEMS

y that the two-component system has
=lifPL-_—3;and(4)F=0ifP=4.

‘3.1 Show without using the phiase rule explicit
hree phases at equilibrium for a

()F=3ifP=1QF=2ifP= () F
3.2 Show that it is not possible to have more than t

one-component system. "
3.3 Blue copper sulphate crystals dec d release their water of hydration when
herwise empty

heated. How many phases and componen

heated vessel?
hases does not alter the phase rule rela-

3.4 The absence of a few components in some p
tion, F+P=C+2. Derive the above conclusion by taking the following system ©

three components distributed over five phases:
A+B @ B+C = A+B+Co A @ A+C |
_ . Phase1 Phase2  Phase3 Phase4 Phasc 5 %
‘“7_ How many degrees of freedom, number of phases and number of components are
- present i eachi o/ ‘the following systems: ,

/t’_-—_ _"'_' -_ ..:'_'_:'_

ompose an
ts are present.in an ot
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/éamponents by two, provided that the only significant external factors acting are

temperature and pressure (i.e., no surface effect, gravitational effect, etc. are
present), or stated in symbols,

P+ F= C+2, or the more usual foorm,C—P+2=F « (17D

where C is the number of components, P the number of phases and F the degrees
of freedom. v - = A

Some deductions from Phase Rule are shown below in tabular form. Application:
to some typical systems follows. ‘

No. of No. of Degrees| Example
phases, P| of Freedom, F

One-Component | 2 -1 Ice—Vapour ; Water—Vapour ;|
System ; Rhombic S—Monoclinic S ;
C=1 Sulphur—Vapour ;
Coa NH,Cl(s)—NH,Cl(g)
3 0 | Triple point of Ice-Water-Vapour

_ ’ | Triple points in Sulphur System
Two-Component | 1 3 NH,Cl(g)+NH;(g) or HCl (g)
System 2 2 Salt Solution—Vapour ;
C=2

‘Satd. salt soln.—Solid ;
NH,Cl(g)+NH;(g)+NH,CI(g) ;
3 1 CaCO5(s)+CaO(s)+CO4(g) ;
Satd. Soln.—Solid—Vapour ;
Liquid 1—Liquid 2 —Vapour

PHASE EQUILIBRIA OF ONE-COMPONENT SYSTEMS

Thermodynamic Consideration I The basic thermodynamics has already been
discussed (Chapter 12). According to this, if the same substance exists in a number
of phases (I, I, etc.) in mutual equilibrium, its chemical potential must be the same
in all the phases, i.e.,

Condition of Phase Equilibrium : p (I)=p (1D (17.8). .

Note that p is an intensive (as opposed to extensive) property anq s0 the eq@bnum
is independent of the amount of the phases present. However, it 18 far s1n.1p1er to
understand such equilibrium from pressure-temperature diagrams (P-T magraxg)
which involves directly observable quantities, rather than p—T diagrams,and this will
be dore here. L

Phase Diagram of Water I The phase diagram of water (i.e., the vapour pressure
versus temperature diagram) is shown in Fig. 17.3. The curve AO (full line) is the
vapour pressure curve of ice which indicates that ice has a small but definite vapour
pressure at each temperature like water. OB is the vapour pressure curve of water.
The ém at B, the critical temperature (374°C)3because above this
temnerators the distinction between a liquid and its vapour vanishes.

§ - —— i —— oy

“Along (A, ice is i equilibrum withits vapour and each temperature has a definite

1761 74
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vapour pressure, This is in agreement with phase rule because this is a one-component
system with two phases (C=1,P=2; .. F=1-2+2=1)and so there is only one
degree of freedom, i.e., if the temperature is fixed, all other properties are fixed.
The same remarks apply along OB (water-vapour equilibrium).

The point of intersection of these two curves, viz.
the point O, is called a TRIPLE POINT, because the
three phases, ice-water-vapour are in equilibrium. It is
really the melting point of ice under its own vapour
pressure ; its value is very near to 0°C, to be exact
0.0098°C under 4.58 mm pressure (i.e., 273.16 K &
6.11 x 102 Nm2 which are the internationally accepted

Pressure

—
e ]
=

[=]

values). The interesting point to note is that it is a fixed [ ----= i

point and admits of no change in temperature, pressure 4 i

or any other property. This is also expected from phase i

rule because C = 1, P =3 and, therefore, the degree of Temperature
freedom, F = 1 — 3 + 2 = zero. ' Fig. 17.3 : Phase diagram

The dotted portion O4’, which is the continuation of ~ °f Water (not to scale)
the curve BO beiow 0°C, is the vapour pressure curve of water when super-cooled
below 0°C. This curve runs above the vapour pressure curve for ice in harmony
with the fact that ice is stabler than water below 0°C. The curve OC represents the
change of melting point of ice with pressure. It is inclined towards the pressure axis
in conformity with the well-known fact that the melting point of ice is lowered by an

increase of pressure.
According to Clausius-Cl. fion, B A g oot s Fiuid
[According to Clausius-Clapeyron equation, dT ~ TAV,,, - For,solid = liqui

equilibrium in case of H,0, AH,, , T are positive, while AV, is negative. Hence, P
vs. T curve (OC) has a negative slope.] ;

To sum up, the curves divide the whole region into three portions, in each of
which, as indicated in the figure, only one phase is present. The temperature and
pressure can both be varied in these single-phase regions, because the degree of
freedom, F'=2. The vapour pressure curves are the common lines of intersection of
these regions and hence along them two phases are in equilibrium with F= 1. At the
triple point O, three phases co-exist in equilibrium
(F = 0) ; also, since the two curves, A0 and BO
intersect at one point, there is only one triple point
for the system. |

Other Forms of Ice I The ice shown in Fig. E- 5000
17.3a is really Ice (I). Many other forms of ice
(Ice II, Ice I, ... Ice VII) are found to exist at l-f”
high pressure. The point to note is that, under such - - .
conditions only either three solid forms of water or - s —30
two solid forms and a liquid water can co-exist, t/°C
because phase rule does not permit the co- Fi8-17.3a:Different phases of ice

10,000
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existence of more than three phases in a one-component system (vide Table). If
four phases of a one-component system would have co-existed, P=4, C=1. Hence,
F=1-4+2=—1.ButF cannot be negative. The minimum value of F is zero.
hase Diagram of Carbon Dioxide I The phase diagram of CO, is similar to that
of water (Fig. 17.4), where OA is the solid = vapour line and OB is the liquid =
vapour line, ‘O’ being the triple point. One essential difference is that the solid
+= liquid transition line OC is inclined to the right, signifying an increase of melting
point with pressure, whereas for water (Fig. 17.3), it is inclined to the left-which is
rather exceptional. This is because for most of the one-component system, AHﬁJS is
positive, hence for solid = liquid equilibrium, slope
of P vs. T curve is positive (for most substances). & @a_sli:d—jan ®
The triple point pressu{'e of CO, is 5.2 atmosphere
and the solid CO, Tas a vapour pressure of
1 atm at a temperature’ as low as —76°C, .

Solid Liquid

Pressure (atm)

Therefore, under atmospheric pressure, the solid oz 5 . Gas
will directly pass into the vapour state (i.e., it would - '
sublime) instead of melting to liquid. Because .k « 5';5

of this property, solid CO, is sold commercially as Temperature °C —
“dry ice” which is free from the messiness of the  fjg, 17.4 : Phase Diagram of €O,
admixed liquid under ordinary conditions. However,

if the external pressure is more than 5.2 atm, solid CO, would melt into a liquid just
like any other solid ; this is shown by the fact that any horizontal line at above 5.2 -
atm cuts the solid-liquid transition line OC, but below this pressure it cuts the solid-
gas transition line but not the former.

Principle of Sublimation  From the above diagram, it is clear that, if a vapour
below its triple point pressure (OD) is cooled, it will be directly converted to the solid
state. The reverse is also equally true. If a solid is heated and the vapour pressure
above it is not allowed to exceed the triple peﬁnt pressure, the solid will be directly
converted to the vaporous state. The above is the principle of sublimation. Thus,
iodine with a triple point of 114°C and 90 mm pressure, is easily sublimed on slow
heating, provided B, is maintained below 90 mm. However, if the heating is too
rapid in an almost closed space, £, exceeds 90 mm and iodine melts to a mobile
liquid. Similarly, ice can be sublimed in a good vacuum below the triple point pressure
and this makes it possible to dry substances by the freeze-drying technique ; for
example, the dehydration of frozen blood plasma under vacuum for preservation.

For those substances, whose triple point pressures exceed one atmosphere, the
condition for sublimation is automatically maintained and hence they pass directly
into the vapour state on heating This is the case with solid carbon dioxide—
commercially known as ‘dry ice’ and extensively used for refrigeration by ice-
cream vendors—which passses directly into the vaporous state, because its triple
point pressure is 5.2 atmospheres (Fig. 17.4) as discussed in the previous Section.

The Sulphur System I Another one-component system, which is slightly more
complex than the previous ones, is the sulphur system, the phase diagram of which

% % =} L
£ nil = W
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