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. the means of conditions™ are (8 = 1) or 7, less b
?13;?1‘:{150;[.:1?::5[ conditions. The df within groups or within mnd{t;l:
are (47 —7) or 40. This last df may -a‘.lsn be foun.d directly: since there
are (6— 1) or 5 df for each condition (N =6 in each group), 5,4
(number of conditions) gives 40 rdf for w1tl;lin groups. The Variance
among M's of groups is 3527/7 or 503.9; and the variance within groups

r 141.6.
" ??f;\?’:nnzmbcr of scores in all and k = number of categories or Broups,

we have for the gencml case that.

df for total S5 (N-=1)
df for within groups SS = (N —=k)
df for among means of groups S5 = (k=1)

Also: (N—=1)=(N-=k)+ (k—1)

(I

Step &

In the present problem the null hypothesis asserts that the 8 sets of
scores are in reality random samples drawn from the same normally dis-
tributed population, and that the means of conditions A, B, C, D, E, F,
G and H will differ only through fluctuations of sampling. To test this
hypothesis we divide the “among means” variance by the “within groups™
variance and compare the resulting variance ratio, called F, with the
F values in Table F. The F in our problem is 3.56 and the df are 7 for the
numerator (df,) and 40 for the denominator (df.). Entering Table F we
read from column 7 (midway between 6 and 8) and rcw 40 that an
F of 2.28 is significant at the .05 level and rn F of 3.14.is significant at the
.01 level, Only the .05 and .01 points are given in the table. These entries
mean that, for the given df's, variance ratios or F's of 2.26 and 3.14 can be
expected ance in 20 and once in 1GY trials, respectively, when the null
hypothesis is true. Since our F is larger than the .01 level, it would occur
less than once in 100 trials by chance. We reject the null hypothesis,
therefore, and conclude that the means of our 8 groups do in fact

differ.

é" fumishes a comprehensive or over-all test of the significance of the
ilere.aces among means. A significant F does not tell us which means

differ significantly, but that at least one is reliably different from som®

others. If F is not significant, there is no reason for further testing, as none

of the mean differences will be significant (see p. 184). But if F is signifi-

cant, we may proceed to test th te di vhe ¢ test {p. 191
as shown in Table 39 C.) e separate differences by the p

J
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he analysis of variance was developed by Sir Ronald A. Fisher, 2 renowned British

Statistician, and the name F test was given to it by Snedecor in Fisher's honour. The |
variance ratios, designated as F, were tabulated by Snedecor in 1946. This device has |
made tremendous contribution to designing of experiments and their statistical analysis.

The analysis of variance deals with variances rather than with standard deviations and
standard errors. The technique is useful in testing differences between two or more means.
Its special merit lies in testing differences between all of the means at the same time. The
analysis of variance is a powerful aid to the researcher, It helps him in designing studies
efficiently, and cnables him to take account of the interacting variables. It also aids in
testing hypotheses. It provides the basis for nearly all the tests of significance in the
designs which we shall consider in the following chapters, The working of the analysis of
variance and its reasoning, therefore, should be thoroughly grasped. In this chapter, we
will try to present some of lhe concepts and the working of the analysis of variance,
which is the foundation of experimental design. It will help in understanding the principles
of designing experiments and the statistical analysis.

\y@msm OF VARIANCE AND ¢ TEST

The 1 test of significance is adequate when we want Lo determine whether or not two means
differ significantly from cach other. It is employed in case of experiments involving only
two groups. However, for various reasons, f test is not adequate for comparisons involv-
ing more than two means. The most serious objection to the use of 1, when more than
two comparisons are to be made, is the large number of computations involved. For

Ix2\* . - .
example, for three groups, 3 5 comparisons or combinations taken two al a time

are required to be made and for 5 groups 10 (5—};5) and for 10 groups 45 (19%(_9)
comparisons arc needed. Thus, as the number of groups increase the number of compari-
sons 1o be made increase rapidly, that is, the computation work increases dizproportion-
ately. Further, if a [ew comparisons turn out to be significant, it will be difficult to inter-
pret the results. Let us take up an example to clucidate this point.

Suppose, in an experiment the investigator is intercsted in studying the effect of

y . R
ket — 1) / '
*For k groups, the number of comparisons will be ‘_rll.;' M ‘.
- { |

\ Ha4z

e \
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-

46 possible 1 tests will have to be made for 10 treatment condi-
first test Hy:py = py; then second test Ho: py = py; and so on, till we
e t5 t tests for the difference between every pair of means, Out of the 451
b cL pect to find an average of 2 or 3 1's (.05 X 45) 1o be significant at 5 p.c. level
Y shance allonc. Suppose, we find that S differences are significant at .05 level. When
rtest 1s bF"'jE applied there is no way to know whether these differences are true differ-
ences or within chance expectation, The more statistical tests we perform, for cxample
several  tests, the more likely it is that some more differences will be statistically signi-
ficant purely by chance, Thus, the ¢ test is notan adequate procedurc to simultancously
evaluate three or more means, We would like the probability of Type I error in the
experiment to be .05 or less, '
The analysis of variance or the Ftest, on the other hand, permits us to evaluate three
or more means at one time. In making comparisons jn experiments involving more than
two means, the equality breaks down. Hence, the analysis of variance should always be
preferred. The Fis also an adequate test for determining the significance of two means.
For two groups (df = 1), VF =1t or F = 1%, Therefore, in case of two treatment condi-
tions or two groups, it is a matter of choice which one of the two tests (¢ or F) is used.
Both yield exactly the same outcome. This means that the one-way analysis of variance
and the two-tailed ¢ test can be used interchangeably in comparing the differences between
two means. However, it will be found that in the same situation F test is easier to perform

than the ¢ lcst>

THE CONCEPT OF VARIANCE

?

10 treatments, Bvidently,
tions. That is,:

perform all the 4

Variance is the very foundation of experimentation and is an extremely useful concept.
et us, therefore, try to understand its meaning and uses before handling simple analysis
of variance.

Variance is a measure of the dispersion or spread of a set of scores. It describes the
extent to which the scores differ from each other, The square root of the variance is called
the standard deviation (s). However, because of its mathematical properties, the variance
is more useful than standard deviation in research. Variance and variation, though, used
synonimously are not identical terms. Variance is only onc of the several statistical
methods of representing variation. Variation is, thus, a more general term which includes
variance as one of the methods of representing variation.

NUMERICAL EXAMPLE

The concept of variance will be explained with the help of o numerical example, Suppose,
an investigator is interésted in evaluating two different methods of instruction on Sth
grade children. Two independent groups of 10 children cach are randomly sclected from
a large number of children in a 5th grade class. The distribution of their achicvement
scores before administering the treatment (methods of instruction) is as given in Table 2.1.
The scores are arranged in the ascending order.

Scanned by CamScanner




Analysis of Variance ;: The Foundation of Experimental Design 23

Table 2.1 THE DISTRIBUTION OF SCORES IN
THE TWO SUBGROUPS (BEFORE

TREATMENT)

Subject Number Xi X
1 1 ' 2
2 2 3
3 4 5
4 5 7
5 7 9
6 9 10
7 10 12
B 12 13
9 14 14

10 16 15
I £0 50

X, and X, represent scores of subgroups A and B
respectively.

In Figure 2.1 the distribution of 10 scores iri each of the two subgroups has been pre-
gented. Their means are X, and X and variances s and 53 respectively.

Groups

B ++ + + ++ +++t+sianm
Xg=9,0

A++ ++ +I++ 4+ + +3i=25.18

xA= !-0

L ] | | L1 | | |
16

L
20

SCORES

Fig. 2.1 Distribution of the scores [n the two subgroups before the treatment,

* Careful observation of Figure 2.1 reveals:

. (i) That, the scores vary about their subgroup means.

Further, the variability |

e
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(s4i=12578 and s} = 21.33) or spread of scores about their respective means is
similar, within the limits of chance variation.

(i) That, the subgroup means (X, = 8.0 and ¥, = 9.0) are similar, within the limits of

chance variation.

The above two observations in the two samples are in accordance with the expectations
of random sampling. That is, the scores in cach subgroup vary about the respective mcans
to a similar extent and, further, the subgroup means are also similar but not identical, as
the two samples were selected randomly (rom the same population.

The investigator, then, administers the Lreatment to the two subgroups; treatments being
assigned randomly. That is, the two subgroups are given two different methods of instruc-
tion. After a period of training, an achievement test is given to both the subgroups. The
distribution of scores of the achievement test, alter the application of treatment is presen-
ted in Table 2.2. The scores are arranged in the ascending order.

Table 2.2 DISTRIBUTION OF SCORES IN THE
TWO SUBGROUPS (AFTER TREAT-

MENT)

Subject Number Xa X»
1 3 8
2 4 10
3 6 12
4 7 14
5 3 15
6 11 17
7 12 19
B 13 20
9 16 22
10 20 23
b 100 160

X, and X, represent scores of subgroups 4 and B
respectively,

The distribution of scores in the two subgroups has been presented in Fig. 2.2 with
N their means (X, and X,) and variznces (s% and 53).
The following observations can be made from Fig. 2.2, in comparison to Fig. 2.1
(i) Within cach subgroup the scores vary about their subgroup means (¥, = 10.0 a‘nﬂ
X4 = 160). However, the variability in each sub-proup about their respective

means is not much different (s = 29.33 and s} = 25.77), within the limits ©
chance variations.

——J
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Groups

5 o 4 4+ b+ 44 52577
Xg =16.0]

A ++ +++ 444+ 4 + s =29 33

!A=1D-O1

| T N T T T T B N B B

0 4 8 12 16 20 24
SCORES

Fig. 2.2 Distribution of scores in the two subgroups after the treatment.

(ii) The subgroup means after treatment (Fig. 2.2) have drifted apart in comparison to
the closeness of means of the two subgroups observed before treatment (Fig. 2.1).
The comparative analysis, before and after the treatment, in Figs. 2.1 and 2.2 respec-
tively is particularly important for understanding the analysis of variance and the
reasoning behind experimental design. Let us examine, '
The variability of subgroup means is of special importance in the analysis of variance,
as it reflects the variation attributable to the treatment ellect as well as other uncontrolled

sources of variation. Let us again refer to Fig. 2.1. We find the two means are similar, . .

within the limits of chance variation. However, in Fig. 2.2, we can observe the effect of
treatment of sub-group means; these have drifted apart. This shows that the treatment
has caused variation in the subgroup means. This is called between group variation.

We have just seen that the treatment caused the subgroup means to drift apart. We
have also observed (Figs. 2.1 and 2.2) that the scores within each subgroup vary about
their respective means (observe the scattering of scores of the two groups around the
arrow point, marking the subgroup means). This variability is also of particular importance
in the analysis of variance. The pooled variability of scores about their respective sub-
group means is called within group variation or *‘error”, It is free from the infuence of
differential treatment.

Thus, we have been able to identify two sources of variation in the scores—one which
reflects the effect of treatment is called “between group™ variation and the one that
reflects the variability within the subgroups is called “within groups or'* error* variation.
An increasc in the difference among the means results in an increase in the variance of
means, and it is this variance that we evaluate relative to the error variance, The procedure
adopted for this is called the analysis of variance. If the variability between the groups is
considerably greater than the error variability, this is indicative of the treatment effect,

Perhaps, the most general way of classifying variability is as systemalic variation and
unsystematic variation. Systematic variation causes the scores to Jean more in one direc-

PE——
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tion than another. We observed in Fig. 2.2 that the application of treatment resulted in
systematic variation in the means of the two subgroups. The variable manipulated by the
experimenter is associated with systematic variation.

Unsystematic variation on the other hand, is the fluctuation in the scores due to the
operation of chance and other uncontrolled sources of variation in the experiment,
Random assignment of subjects in different groups helps in reducing the unsystematic
variation or error, .

The most important function of experimental design is to maximize the systematic
variation, control the extraneous source of variation, and minimize the unsystematic or
error variation, We will see in the later chapters that this objective is achieved in different
ways in different designs.

A variance in the terminology of the analysis of variance is more Trequently called a
mean square,

Mecan Square (MS) = H__Varlafmn 52
dt f

In words, a mean square is the average variation per degree of freedom. It is also the
basic definition of variance.

In the foregoing discussion we have explored the concept of variance and its importance ~
in the anulysis of variance. Before we take up the computation of simple or one-way
analysis of variance, let us understand some other important cancepts used in_the analysis
of variance, like sum of squares, mean square, df, etc., and their computation. \

NUMERICAL EXAMPLE

Suppose, a group of 5 subjects is given a performance test and the distribution of their
scores is as given in Table 2.3,

Table 2.3 THE PERFORMANCE SCORES OF
3 SUBIECTS

Subjecls —

X Xm=(X-.X) x
1 2 -3 9
2 3 -1 1
3 5 0 0
4 6 i |
5 3 | 9

ZX =25 Ix=0 Zx? w20 "
X=5
Sum of Squares or SS = Ix? = 20 (2.1)
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Comments

Srer 1. In column (i), the sum of the scores (X£X) has been worked out and is equal
to 25.
STep 2. In column (ii), the scores have been squared and summed up. The sum of the

squares of the scores (£X'?) i1s cqual to 145. . _
The sum of squares (Zx?), by the mean deviation method, was derived by adding up the

square of the deviation of the scores from the group mean. However, in the abO‘Vc comput-
ation (direct method) we have squared the raw scores. Therefore, in order to derive the sum
of squares we have to apply a correction (C). From the raw scores the sum of squares can
be derived directly by applying formula 2.3. A correction term [C=(ZX)*/N=(25)}/5=125}
is subtracted from the sum of column (ii), i.e., ZX2. Thus, subtracting 125 (C) from 145
(ZX?), we obtain the sum of squares that is equal to 20, the value obtained by the mean
deviation method also. The value of the mean square derived by both the methods is the
same, which is obtained in the same manner, that is, by dividing the sum of squares by
the df (SS/df), as given in formula 2.4,

It is important to understand the working of the direct method as in this book we shall
always be following the direct or the raw score method. This method is preferred over
the mean deviation method for its elegance and ease. This method comes handy, if a

calculator is available to the investigator.
i

\/%WAY ANALYSIS OF VARIANCE

We have just explored the variance notion and learnt the methods employed for comput-
ing the sum of squares and the mean square. Now, we shall try to grasp the working of
the one-way analysis of variance with the help of a numerical cxample. In shortened form
the analysis of variance is called ANOVA and sometimes ANOVAR.

The rationale of the analysis of variance is that the total variability of a set of measures,
composed of several groups, can be partitioned into specific parts, each identifiable with
a given snurce of variation. In the simple analysis of variance, the total sum of squares is
partitioned into two parts: a sum of squares based upon the variation between the group
means, and a sum of squares based upon variations within the several groups. On divid-
ing the sum of squares by df, we obtain mean square, abbreviated as MS. Here the sample
values are referred to as mean squares and not variance. The mean squares (sample values)
are estimates of the variances (population values), '

We have, thus, two estimates of the population variance—between groups and within
groups. The F may, thus, be defined as

Between Groups Mean Square

e Within Groups Mean Square

(2.5)
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The principle ;
[ i i bl
between 11 P Imvolvcd In the analysis of variance is the comparison of the variability
the various groups with the

f\ ol i ) sum of the variability found within the groups. If the
a:?:;":c?:::‘:’;z ';5:11&:]21611!15! l_argcr than the latter, lhcnyil is evidence ol_' treatment cffect
if the difference betw ypothesis (Hg) and acm.:pt.l.hc altcrnat.m? hypothesis (H,). However,
S een llhc sour.ccs of -vanablhty falls within the range c?cpcclcd from

PIINg error, the analysis of variance will lead to the decision of retaining the null
hypothesis (Hy). We shall, then, conclude that therc was no evidence of treatment effect
and the differences between the group means were due to chance.

The null hypothesis which is tested by ANOVA, is that the k means of the populations
from which the samples were randomly drawn are all equal, that is, Hp : p1 = p2 = p3 - - -
= pr. The rejection of Hp tells us only that some inequality exists. To investigate the
Inequality, we test the means pairwise, The procedure will be explained in chapter 4.

It may be noted that the decision to reject or not to reject the null hypothesis is a pro-
babilistic decision. In the analysis of variance the decision to reject or retain the null
hypothesis is made on the basis of F distribution tables, given in Appendix, Table B. In

F test we need two sets of degrees of freedom (df): Oné for the numerator and the other
for the denominator.

NUMERICAL EXAMPLE

An investigator is interested in exploring the most effective method of instruction iin the
class room. He decides to try three methods: Lecture (1); Seminar (2); and Discussion @3).
.. He randomly selects 5 subjects for each of the three groups from a class of. 10th grade
. students. After three months of instructions an achievement test is adrqinnstcrac'I. to tl:}c
three groups. The distribution of achievement scores in the three groups 1§ as given In
Table 2.5.

Table 2.5 THE DISTRIBUTION OF ACHIEVEMENT SCORES OF SUBJECTS
TREATED BY THE THREE METHODS OF INSTRUCTIONS

Method
Subject - . Vo,
Number Lecture Seminar Discussion
(1) (2) 3

1 8 11 5

2 10 13 5

k] 11 13 8

4 11 15 9

5 12 16 10

r 52 63 17 \}_5_?[6

Here nom 5; k wu 3; N o ko= 5%3 = 15
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Partitioning-of Total Variation and df

: s o vill hav
In the simple analysis of variance, the total variation and df wil
partitioning:

¢ the following

Tolal hkn—1 |4
Between Within
k= -1 3
SrouDs 2 oGS k(n—1) l

Fig. 2.3 Schematic represcntation of the analysis.

where
n = number of subjects in each of the three subgroups (n = J5)
k = number of subgroups (k-= 3)

kn = total number of subjects or observations in the experiment (¥)

The left hand rectangles indicate the partitioning of the sum of squares and the adjoin-
ing rectangles indicate the partitioning of total df, in the general form. The numerals out-
side the rectangles are the df associated with the numerical example. The double-line
enclosed rectangles indicate the final partitioning.

In the equation form the partitioning of the total sum of squares may be expressed as

Sslnlll = Ssbtl.nmupl + st.unupl {26)
where

SSicts = total sum of squares generated from the deviation of the individual obser-
vations rom the mean of the total observations in the experiment

SSber.groups = between groups sum of squares generated from the deviation of the sub-
group means from the mean of the total observations in the experiment

SSy.groups = Within groups sum of squares generated from the pooled deviation of the
individual observation from the respective subgroup means

Computation

_ 157y

. , G?
(i) Correction Term (C) = e 1643.27

(i) Total SS=(Z X - C

=@+ 1004112+ ... +9410)=C
= |785.00 — 1643.27 = 141.73

S ————— s ———————————— —————
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(1ii) Between Groups SS = Z(Z xn 522 682 372
T =T 4T +E-C
- = 17394 — 1643.27 = 96.13
(iv) Withi o
) Within Groups SS = Total SS§ — Between Groups SS

= 141,73 — 96.13 = 45.6

(v) Table 2.6 SUMMARY OF ONE-WAY ANALYSIS OF VARIANCE
Source of Variation SS dr MS F
Between Groups 96.13 2 48.07 12.65%
Within Groups (Error) 45.60 12 3.80
Total 141.73 14
*"*F.n(2, 12) = 6.93 F= ?———80—;’ = 12.65

Comments

Partitioning of Total Variation and df

In the one-way analysis of variance the total sum of squares is partitioned into two
component parts—one due to the variation between the groups and the other due to
the variation within thc groups. In the present problem the total degrees of freedom are
14 (krn — 1), partitioned into two component parts, 2 di'.[{kf - 1)_] a‘ttributable to the varia-
tion between the groups and 12 df [k(n — 1)] to the Ivanatlon wiltl.nn.the groups.

An important aspect of the analysis of variance is the partitioning uf‘_t'ota'l su:!'l of
squares and degrees of freedom. It will .b? o_bscrvcd later that the partitioning dlﬁFrS
with the nature of the design. Once, the partitioning of sum of squares and df of a design
is understood, the computation part is mechanical. Therefore, before starting the actual

analysis work, one should try to comprehend the schematic representation of the analysis,
]

and follow the computations step by step.

Computation

STEP 1: Correction Term As explained earlier, for computing the sum of squares by the

. ion i ed. The correction term (C) was, however, the same for
g:::ncr:ng‘:tl??t? :Sﬁz:r:;t;;:a:sc: ?;dthe numerical example, with the exception of within
groups sum of squares, explained under thelcommcnts in Step 4.

The correction term is obtained by squaring the g-rand total (G = 52 + 68 + 37 = 157)
and then dividing it by the total number of subjects or observations in the experiment
(N = kn=3x5=15). The correction term (G¥/N), was found to be equal to 164.3.2.7.

Step 2: The Toral SS The total sum of squares is a measure of the total variation of
the individual scores about the combined mean. It rcﬂec'ts all the sources of variation,
that is, between groups variation and within groups variation in the present case.
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The total sum of squarcs is obtained by combining the scorcs of the three groups and

C ) . HE > Sct le SCOores. In ale = C.IC}I Df- lh . .
HIL:&I]HL [hLm a8 one p I ‘ — t 1

then the squares are summed, and thereafter correction term T
. - am 3.
obtained sum. The total sum of squares in the present €xd plt_: 15 equa ) kb

In- Step 2, all scores have not been displayed; the ommission of Lc;tam tc]rms ?f the
sequence has been indicated by dots. For example, 8 + lqz + St + 9%+ 107 indicates
that the individual scores from the first to the last of the distribution have been squareq
and added. g

STEP 3. Between Groups SS The sum of squares between groups s a measure of. the
variation of the group means about the combined mean. If the group means do not differ
among themselves at all the sum of squares between groups will be zero. Thus, greater
the variation in the group means, the larger is the sum of squares between groups.

In Step 3, between groups sum of squares has been obtained by the direct method,
The totals of each of the three subgroups (i.e., 52, 68, and 37) have becen squared and
divided by the number of observations in each subgroup and summed [Z(ZX)?/n). Finally,
the correction term (C) has been subtracted from the sum of squares. The between groups
sum of squares is found to be equal to 96.13.

STeP 4: Within Groups SS  The within group sum of squares is the pooled sum of.’
squares based on the variation within each group about its own mean. The within groups
sum of squares is also called error sum of squares. All the uncontrolled sources of varia-
tion are pooled in the within groups sum of squares,

In Step 4, the sum of squares within groups has been obtained by subtraction, taking
advantage of the addition theorem characterizing this analysis. From equation 2.6 it is
observed that

SSIOIII —— Ssbt:. groups + st. groups
st. groups = SSIOII] - SSbe:.graup:

By substituting the obtained values of SS,. or the total sum of squares and SSpeiuces
or the sum of squares between groups, we obtain sum of squares within groups. It is
equal to 45.6. However, there can be no verification of the computation of the within
groups sum of squares by the subtraction method. Therefore, beginners would do well to
calculate independently the within groups sum of squares, Let us carefully observe the
computation of the within groups sum of squares by the direct method.

We have just learnt that the within groups sum of squares is the pooled sum of squares.
based on the variation of the individual observations about the mean of the particular
subgroup. Therefore, the sum of squares within groups is equal to

2
SS within subgroup 1 = (8% 4 10 4- .., 4 122) — -5-52_

= 550.0 — 540.8 = 9.2

Note:  The lower case letter n represents the number of observations or subjects in the subgroup
(n=5), upper case letter N represents the total number of observations or subjects in the
subgroups (N="135), and & represents the number of groups or treatments (& = 3).
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S§ within subgroup 2 = (134132 4 ..+ 169 L
-3

= 940.0 — 924.8 = 15.2

SS within subgroup 3 = (52 4 52 4, .. + 10?) — 37
) 5

=295 —273.8 = 21.2
iF 5o piud SSyimin = 9.2 4 152 4 21.2 = 45.6
mistake is committed, the outcome by the di i
_ , direct
oh::ncd by the Sibiradtion method y the direct method is exactly the same as
Note: o
ote: (a) The correction factor for each subgroup is different, that is, the square of the
respective subgroup total divided by », the number of observations in each
subgroup.
(b) SS.. group is the sum of the individual sum of squares within each of the three
subgroups.
(c) The df associated with the sum of squares within groups is also the pooled df
of the subgroups, that is, 4 + 4 + 4 = 12,
STEP 5: Analysis of Variance Summary Table Preparing analysis of variance table is the

. final step in the analysis. Note carefully the format of the table 2.6 which is of standard

form. First column is for sources of variation, then SS, followed by df, MS, and finally F.

The reader will recall that the mean squarc (MS) or variance estimate is obtained by
dividing the SS by the appropriate df. Dividing the SS by its df gives an estimate of
the common population variance that is indepedent of the variation of the group. Thus,
dividing the between groups sum of squares by its df, i.e., 96.13 by 2 gives MS which
in this example is equal to 48.07. This value is the estimate of the common population )
variance independent of the variation within groups. Similarly, dividing of the within
groups SS by its df, i.e., 45.6 by 12 gives MS which is found to be 3.8. Again, this value is
the estimate of the common population variance which is independent of the variation in
the group means.

Then, the ratio (F) of the MS between groups and the MS within groups is obtained by
dividing 48.07 by 3.80. Here the obtained value of Fis equal to 12.65. It is entered in the

first row under column F.

Test of Significance

The next step is to evaluate the obtained F value. We consult the F table in the Appendix,
Table B, for 2 and 12 degrees of freedom. First we move along the top row, where
degrees of freedom for greater mean square arc given, and pause at 2. Then, we proceed
downwards in column 2 until we find the row entry corresponding to df 12, The values of
F significant at the 5 p.c. point arc given in light face type, and those significant at 1 p.C.
in bold (dark) face type. The critical value of F corresponding to 2and 12df at a=.01
is 6.93. Since our obtained value of F, 12.65 far exceeds the critical or tabled value, 6.93,
we reject the null hypothesis (Ho). The overall F indicates that the means of the three
groups do not fall on a straight line with zero slope. Hence the null hypothesis that the
three groups are random samples from 2 common normal population is rejected. On the
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de that the three methods of instruc-
As Fis an overall index, further

airs of means. This aspect will be

i u

basis of the results of the experiment, we can concl et

" tion produced significant differences in the three ,.';,ml ps.
tests on means have (o be carried to compare the p

discussed in Chapter 4.

STRENGTH OF ASSOCIATION o eans are
The significant F indicates that the observed diﬂ'cref:ceg bctwecnhllhe tr:gorl.l;lt g
not likely to arise by chance. However, it does not indicate fanyl mng e A
of the treatment effect. The statistic omega square (wz)‘ is a mr.jasurc 0 : sg b
treatment effect. It gives us the proportion of the total variability in a set O .5cohrc
can be accounted for by the treatments. That is, what portion of the variance In the scorc;
can be accounted for by the differences in the treatment groups. The formula for strengt
of association is

= SSbcle‘:n — U‘: '__l]_MS'L\'ilhin (27)

SSoul + MSyihin

Let us now compute the strength of treatment effects in our numerical example. Tl'_1e
values of SSperweens SSioral, and MS.imin, have been obtained from Table 2.6. The steps In
¢omputing w? are given below

SShetween = 96,13
SSioum1 = 141.73
MS.imin = 3.8
k = 3 (treatments)

,_96.13—(3—138) _ oo

-

v WS TSI 3.8

Thus, approximately 61 per cent of the variance in the dependent variable is accounted
for by the difference in the method of instruction. In other words, there is fairly strong
relationship between methods of instruction and achievement scores of the subjects.

GENERAL COMMENTS

One may wonder, why do we keep the between groups variance in the position of the
numerator and the within groups variance in the denominator. The logic is simple. If the
group means are significantly different, then the mean square between groups should be
larger than the mean square within groups (error). It is rare that small values of F(F < 1)
indicate anything but sampling variation. It is only large values of F that suggest treat-
ment cffects, Therefore, we refer to the F table only when the ratio is greater than one.
If the mean square between groups is smaller than the mean square within groups, then
the F value will be less than one. In the analysis of variance summary table we simply
ignore the value of obtained F and there is-no.need to refer to the F tables as the data
offer no evidence against the null hypothesis,

The significant F indicates that the three methods of instruction did produce differences
in.the achievement scores of the groups. However, F does not indicate which of the three
differences among the pair of means are significant. To find this, post hoc comparisons
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betwee :
s 'dn the subgroup means is done. There are a variety of methods for comparing the
individual means. Some of these will be discussed in chapter 4,

SUMMARY OF STEPS

We have just completed the computation of one-way or simple analysis of variance with
detailed comments on the various steps involved. Let us summarize the steps involved |
Observe carefully the partitioning of the total variation (SS) and df.

1.

2. Calculate the correction term (C).

3. Calculate the total sum of squares (SSiour)-

4. Calculate the between groups sum of squares (SSperween)-

5. Calculate the within groups sum of squares (SSwimin) by subtraction or by direct

method. .

6. Determine the between groups df.

7. Dcterminc the within.groups df by subtraction or directly.

8. . Prepare analysis of variance summary table.

9. Enter the obtained values of SSyewween and SS.imui» and their respective df.

10. Compute the between groups mean square (MSberween) by dividing SSpetween DY

its df. _
whhin) b}' diViding stllbin b}f its df. -

11. Compute
12. Calculate F ratio (

the within groups mean squarc (MS

Msbe:w:cu:'MS\\ilhinj- .

13. Compare the obtained F ratio with the critical F value from the F table.:

After presenting a detailed discussion and computa!ion of one-way analysis of variance,
we now procecd a step forward 1o understand the rationale and computation of two-way

analysis of variance. ) s
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